MATH 319, Fall 2013, Assignment 1 Textbook Questions

Section 1.1 Draw a direction field for the given differential equation. Based on the direction field, determine the behavior of y as $t \rightarrow \infty$. If the behavior depends on the initial value of y at $t=0$, describe the dependency.
\# $4 y^{\prime}=-1-2 y$
\# $\mathbf{1 4} y^{\prime}=y(y-2)^{2}$
Section 1.1, \#22 A spherical raindrop evaporates at a rate proportional to its surface area. Write a differential equation for the volume of the raindrop as a function of time.

Section 1.2, \#5 Undetermined Coefficients. Here is an alternative way to solve the equation

$$
\begin{equation*}
d y / d t=a y-b \tag{1}
\end{equation*}
$$

(a) Solve the simpler equation

$$
\begin{equation*}
d y / d t=a y \tag{2}
\end{equation*}
$$

Call the solution $y_{1}(t)$.
(b) Observe that the only difference between (1) and (2) is the constant $-b$. Therefore it may seem reasonable to assume that the solutions of these two equations also differ only by a constant. Test this assumption by trying to find a constant k such that $y=y_{1}(t)+k$ is a solution of (1).

