MATH 319, Fall 2013, Assignment 2 Textbook Questions

Section 2.1 # 9 For the differential equation 2y' + y = 3t, do the following:

- (a) Draw a direction field for the given differential equations.
- (b) Based on an inspection of the direction field, describe how solutions behave for large t.
- (c) Find the general solution of the given differential equation, and use it to determine how solutions behave as $t \to \infty$.
- # 16 Find the solution of the following initial value problem:

$$y' + (2/t)y = (\cos t)/t^2, \quad y(\pi) = 0, \quad t > 0.$$

33 Show that if a and λ are positive constants, and b is any real number, then every solution of the equation

$$y' + ay = be^{-\lambda t}$$

has the property that $y \to 0$ as $t \to \infty$. [*Hint:* Consider the cases $a = \lambda$ and $a \neq \lambda$ separately.]

- Section 2.2 # 5 Solve the differential equation $y' = (\cos^2 x)(\cos^2 2y)$. # 8 Solve the differential equation $\frac{dy}{dx} = \frac{x^2}{1+y^2}$.
 - # 23 Solve the initial value problem

$$y' = 2y^2 + xy^2, \quad y(0) = 1$$

and determine where the solution attains its minimum value.