MATH 319, Fall 2013, Assignment 4 Due date: Friday, October 11

Name (printed):	
UW Student ID Number:	

Discussion	Section: (circle))
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	011010	,

Liu Liu:	301	302	303	304
Huanyu Wen:	305	306	323	324
Dongfei Pei:	325	326	329	
Kai Hsu:	327	328		

Instructions

1. Fill out this cover page **completely** and affix it to the front of your submitted assignment.

Correctness	
	/20

2. **Staple** your assignment together and answer the questions in the order they appear on the assignment sheet.

Completeness	
	/5

3. You are encouraged to collaborate on assignment problems but you must write up your assignment independently.

Copying is strictly forbidden!

Total:	/25
Bonus:	/3

Applications, Numerical Methods

Suggested problems:

Section 2.3: 1-5, 13-19

Section 2.7: 1-4, 11-19

Section 8.3: 1-15

Problems for submission:

Section 2.3: 3, 5(a)

Section 2.7: 3(a,b)

Section 8.3: 3(a) (compare with exact solution as well)

(Justify your answers for full marks!)

1. Consider the reversible chemical reaction

$$X + Y \stackrel{\alpha}{\rightleftharpoons} 2X$$

where X and Y are chemical species (i.e. molecules). Assuming the solution is well-stirred, it is reasonable to model the reaction rate by the law of mass action, which says the rate of a reaction is proportional to the product of the reactant concentrations. For example, the reaction rate of the forward reaction $X + Y \xrightarrow{\alpha} 2X$ would be $\alpha[X][Y] = \alpha xy$ where α is a proportionality constant. The differential equation governing the concentration of X can then be given by

$$\frac{dx}{dt} = \alpha xy - \beta x^2, \ x(0) = x_0. \tag{1}$$

(*Note:* This equation cannot be solved directly because it depends on a second variable, y, which depends on t.)

- (a) Note that the variables x and y are related by the conservation relationship x + y = C (that is to say, the total amount of X and Y remains constant over time). Use this relationship to rewrite the RHS of (1) so that it only depends on x (i.e. eliminate y from the equation).
- (b) Solve the initial value problem found in part (a) for x(t) with the values $\alpha = \beta = C = x_0 = 1$.
- (c) Use the conservation relationship to solve for y(t).

- (d) Describe the long-term behavior of x(t) and y(t). How does this depend on the initial conditions? Does this make sense in the context of the physical problem? (*Hint*: Note that the initial conditions are related by $x_0 + y_0 = C$.)
- 2. Consider the irreversible chemical reaction

$$X \rightarrow Y$$

subject to continuous inflow and outflow of X and Y (constant inflow can be modeled by a constant, while outflow is typically assumed to be proportional to the current concentration, x or y, respectively). This can be modeled by the system of first-order differential equations

$$\frac{dx}{dt} = \alpha - \beta x, \qquad x(0) = x_0$$

$$\frac{dy}{dt} = \gamma + \delta x - \eta y, \qquad y(0) = y_0$$

where $\alpha, \beta, \gamma, \delta, \eta > 0$ are constants. (*Note:* Positive signs corresponds to terms of inflow, while negative signs correspond to terms of outflow.)

- (a) Solve this differential equation for the parameter values $\alpha = \beta = \gamma = \delta = 1$, $\eta = 2$, $x_0 = 0$ and $y_0 = 1$. [**Hint:** Solve the equation for x first, and then substitute it into the equation for y.]
- (b) What are the limiting values (i.e. $t \to \infty$) of the concentrations?

Bonus! Adapt the MATLAB code given online to perform the forward Euler method for the system in Question #2(a) with $\Delta t = 0.1$ and $\Delta t = 0.01$ over the range t = 0 to t = 5. Print off the results of the numerical simulations of both the x and y variables. Also include plots of the real solutions found in Question #2(a), for comparison. Note: You will need to modify the code to keep track of two independent variables, x and y, which both depend on t. In general, for a system of two variables

$$\frac{dx}{dt} = f_1(x, y, t)$$
$$\frac{dy}{dt} = f_2(x, y, t)$$

the forward Euler method is given by

$$x_{n+1} = x_n + f_1(x_n, y_n, t_n) \Delta t$$

 $y_{n+1} = y_n + f_2(x_n, y_n, t_n) \Delta t$
 $t_{n+1} = t_n + \Delta t$.