MATH 319, Fall 2013, Assignment 4 Textbook Questions

Section 2.3, \#3 A tank originally contains 100 gal of fresh water. Then water containing $1 / 2 \mathrm{lb}$ of salt per gallon is poured into the tank at a rate of $2 \mathrm{gal} / \mathrm{min}$, and the mixture is allowed to leave at the same rate. After 10 min the process is stopped, and fresh water is poured into the tank at a rate of $2 \mathrm{gal} / \mathrm{min}$, with the mixture again leaving at the same rate. Find the amount of salt in the tank at the end of an additional 10 minutes.
\#5(a) A tank contains 100 gal of water and 50 oz of salt. Water containing a salt concentration of $(1 / 4)(1+(1 / 2) \sin (t))$ oz/gal flows into the tank at a rate of $2 \mathrm{gal} / \mathrm{min}$, and the mixture in the tank flows out at the same rate. Find the amount of salt in the tank at any time.

Section 2.7, \#3(a,b) Consider the initial value problem $y^{\prime}=0.5-t+2 y, y(0)=1$. (a) Find approximate values of the solution of the given initial value problem at $t=0.1,0.2,0.3$, and 0.4 using the Euler method with $h=0.1$. (b) Repeat part (a) with $h=0.05$. Compare the results with those found in (a).

Section 8.3, \#3(a) Consider the initial value problem $y^{\prime}=2 y-3 t, y(0)=1$. Find approximate values of the solution at $t=0.1,0.2,0.3$, and 0.4 using the Runge-Kutta method with $h=0.1$. Compare with the exact solution.

