MATH 319, Fall 2013, Assignment 5

Due date: Friday, October 18

Name (printed): \qquad

UW Student ID Number: \qquad
Discussion Section: (circle)

Liu Liu:	301	302	303	304
Huanyu Wen:	305	306	323	324
Dongfei Pei:	325	326	329	
Kai Hsu:	327	328		

Instructions

1. Fill out this cover page completely and affix it to the front of your submitted assignment. \square
2. Staple your assignment together and answer the questions in the order they appear on the assignment sheet.
3. You are encouraged to collaborate on assignment problems but you must write up your assignment independently. Copying is strictly forbidden!

Total:	$/ 25$
Bonus:	$/ 3$

Second-Order Linear ODEs

Suggested problems:

Section 3.1: 1-22
Section 3.2: 1-6, 13, 14, 17-28, 41-45
Section 3.3: 1-22, 27, 34-42
Section 3.4: 1-16
Section 3.5: 1-26, 29, 30

Problems for submission:

Section 3.1: 10, 18
Section 3.2: 5, 6, 27
Section 3.3: 11, 20, 35
Section 3.4: 8, 12
Section 3.5: 7, 9
(Justify your answers for full marks!)
Bonus Use the method from lecture to find the general solution of

$$
8 y^{\prime \prime \prime}(x)+12 y^{\prime \prime}(x)+6 y^{\prime}(x)+y(x)=0 .
$$

That is to say, use the assumption $y(x)=e^{r x}$ to find one solution and then use the construction $y_{2}(x)=u(x) y_{1}(x)$ to find others. [Hint: Since the differential equation is third order, you must find three solutions overall!]

