MATH 319, Fall 2013, Assignment 5
 Textbook Questions (2 pages!)

Section 3.1, \#10 Find the solution for the following initial value problem, sketch the graph of the solution and describe its behavior as t increases:

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0, y(0)=2, y^{\prime}(0)=-1
$$

\#18 Find a differential equation whose general solution is $y=C_{1} e^{-t / 2}+$ $C_{2} e^{-2 t}$.

Section 3.2, \#5 Find the Wronskian of $y_{1}(t)=e^{t} \sin (t)$ and $y_{2}(t)=e^{t} \cos (t)$.
\#6 Find the Wronskian of $y_{1}(\theta)=\cos ^{2}(\theta)$ and $y_{2}(\theta)=1+\cos (2 \theta)$.
\#27 Verify that the following functions y_{1} and y_{2} are solutions of the given differential equation. Do they constitute a fundamental set of solutions?
$(1-x \cot (x)) y^{\prime \prime}-x y^{\prime}+y=0,0<x<\pi ; y_{1}(x)=x, y_{2}(x)=\sin (x)$
Section 3.3, \#11 Find the general solution of the following differential equation:

$$
y^{\prime \prime}+6 y^{\prime}+13 y=0
$$

\#20 Find the solution of the following initial value problem, sketch the graph of the solution and describe its behavior for increasing t :

$$
y^{\prime \prime}+y=0, y(\pi / 3)=2, y^{\prime}(\pi / 3)=-4
$$

\#35 Use the substitution $x=\ln (t)$ to solve the following differential equation

$$
t^{2} y^{\prime \prime}+t y^{\prime}+y=0
$$

Section 3.4, \#8 Find the general solution of the following differential equation:

$$
16 y^{\prime \prime}+24 y^{\prime}+9 y=0
$$

\#12 Solve the following initial value problem, sketch the graph of the solution and describe its behavior for increasing t :

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0, y(0)=0, y^{\prime}(0)=2
$$

Section 3.5, Find the general solution of the following differential equations: \#7

$$
2 y^{\prime \prime}+3 y^{\prime}+y=t^{2}+3 \sin (t)
$$

\#9

$$
u^{\prime \prime}+\omega_{0}^{2} u=\cos (\omega t), \omega^{2} \neq \omega_{0}^{2}
$$

