MATH 319, Fall 2013, Assignment 6

$$
\text { Due date: Friday, October } 25
$$

Name (printed): \qquad
UW Student ID Number: \qquad
Discussion Section: (circle)

Liu Liu:	301	302	303	304
Huanyu Wen:	305	306	323	324
Dongfei Pei:	325	326	329	
Kai Hsu:	327	328		

Instructions

1. Fill out this cover page completely and affix it to the front of your submitted assignment. \square
2. Staple your assignment together and answer the questions in the order they appear on the assignment sheet.
3. You are encouraged to collaborate on assignment problems but you must write up your assignment independently. Copying is strictly forbidden!

Total:	$/ 25$
Bonus:	$/ 3$

Non-Homogeneous DEs, Variation of Parameters

Suggested problems:

Section 3.5: 1-26, 29, 30
Section 3.6: 1-10,13-18, 28-32

Problems for submission:

Section 3.5: 10, 13, 18, 23(a)
Section 3.6: 4, 8, 17, 30
(Justify your answers for full marks!)
Bonus! A more technically correct statement of the variation of parameters formula is

$$
y_{p}(x)=-y_{1}(x) \int_{x_{0}}^{x} \frac{y_{2}(s) g(s)}{W\left(y_{1}, y_{2}\right)(s)} d s+y_{2}(x) \int_{x_{0}}^{x} \frac{y_{1}(s) g(s)}{W\left(y_{1}, y_{2}\right)(s)} d s
$$

which takes the initial point x_{0} into account.

Consider the nonhomogeneous second order DE

$$
a \frac{d y^{2}}{d x^{2}}+b \frac{d y}{d x}+c y(x)=g(x)
$$

Show that the particular solution $y_{p}(x)$ may be computed by

$$
y_{p}(x)=\int_{x_{0}}^{x} K(x-s) g(s) d s
$$

where

$$
K(z)= \begin{cases}\frac{e^{r_{2} z}-e^{r_{1} z}}{r_{2}-r_{1}}, & \text { if } b^{2}-4 a c>0 \\ z e^{r z}, & \text { if } b^{2}-4 a c=0 \\ \frac{e^{\alpha z} \sin (\beta z)}{\beta}, & \text { if } b^{2}-4 a c<0\end{cases}
$$

where r_{1}, r_{2}, r, α, and β correspond to the various roots of r from the theorem from class.

