MATH 319, Fall 2013, Assignment 6 Due date: Friday, October 25

Name (printed): _____

UW Student ID Number: _____

Discussion Section: (circle)					
Liu Liu:	301	302	303	304	
Huanyu Wen:	305	306	323	324	
manya wen	000	000	020	024	
Dongfoi Doit	225	296	220		
Dongiel Pel:	323	320	329		
Kai Hsu:	327	328			

Instructions

1. Fill out this cover page **completely** and affix it to the front of your submitted assignment.

Correctness	
	/20

- 2. Staple your assignment together and answer the questions in the order they appear on the assignment sheet.
- 3. You are encouraged to collaborate on assignment problems but you must write up your assignment independently. Copying is strictly forbidden!

/5

Completeness

1	Total:	/25
,	Bonus:	/3

Non-Homogeneous DEs, Variation of Parameters

Suggested problems:

Section 3.5: 1-26, 29, 30 Section 3.6: 1-10,13-18, 28-32

Problems for submission:

Section 3.5: 10, 13, 18, 23(a) Section 3.6: 4, 8, 17, 30 (Justify your answers for full marks!)

Bonus! A more technically correct statement of the variation of parameters formula is

$$y_p(x) = -y_1(x) \int_{x_0}^x \frac{y_2(s)g(s)}{W(y_1, y_2)(s)} \, ds + y_2(x) \int_{x_0}^x \frac{y_1(s)g(s)}{W(y_1, y_2)(s)} \, ds,$$

which takes the initial point x_0 into account.

Consider the nonhomogeneous second order DE

$$a\frac{dy^2}{dx^2} + b\frac{dy}{dx} + cy(x) = g(x).$$

Show that the particular solution $y_p(x)$ may be computed by

$$y_p(x) = \int_{x_0}^x K(x-s)g(s) \, ds$$

where

$$K(z) = \begin{cases} \frac{e^{r_2 z} - e^{r_1 z}}{r_2 - r_1}, & \text{if } b^2 - 4ac > 0\\ z e^{r z}, & \text{if } b^2 - 4ac = 0\\ \frac{e^{\alpha z} \sin(\beta z)}{\beta}, & \text{if } b^2 - 4ac < 0, \end{cases}$$

where r_1, r_2, r, α , and β correspond to the various roots of r from the theorem from class.