MATH 319, Fall 2013, Assignment 7 Due date: Friday, November 1

Name (printed):		
V Student ID Number:		

Discussion Section: (circle)

Discussion	Section	1: (circ	ne)	
Liu Liu:	301	302	303	304
Huanyu Wen:	305	306	323	324
Dongfei Pei:	325	326	329	
Kai Hsu:	327	328		

Instructions

1. Fill out this cover page **completely** and affix it to the front of your submitted assignment.

Correctness	
	/20

2. **Staple** your assignment together and answer the questions in the order they appear on the assignment sheet.

Completeness	
	/5

3. You are encouraged to collaborate on assignment problems but you must write up your assignment independently.

Copying is strictly forbidden!

Total:	/25
Bonus:	/3

Suggested problems:

Section 3.7: 1-7, 9-11, 15, 17 Section 3.8: 1-12, 15, 17-25

Problems for submission:

Section 3.7: 1, 4, 11 Section 3.8: 1, 12, 15

(Justify your answers for full marks!)

1. Resonance is not a phenomenon reserved for undamped mechanisms. Consider the following example:

$$\frac{d^2x}{dt^2} + \frac{dx}{dt} + x(t) = \cos(\omega t). \tag{1}$$

where ω is as yet undetermined. That is to say, suppose we have m=1 kg, c=1 N/(m/s) and k=1 N/m.

- (a) Find the general solution of (1). [**Hint:** Note that we do not need to consider cases for ω !]
- (b) By considering the limit as $t \to \infty$, divide the solution from part (a) into two parts: a transient solution $x_{tr}(t)$ which goes to zero in the limit, and a steady periodic solution $x_{sp}(t)$ which does not. (In other words, write $x(t) = x_{tr}(t) + x_{sp}(t)$.)
- (c) Find the amplitude of the steady periodic function $x_{sp}(t)$ found in part (c). [**Hint:** Consider writing the portion $x_{sp}(t)$ in the form $A\cos(\omega t \alpha)$ but only find A.]
- (d) At which value of ω does A achieve its maximum? Interpret this value in terms of the physical system. In particular, how does it compare to the quasi frequency of the unforced system? [Hint: Take the derivative of A with respect to ω !]

Bonus! Consider a pendulum/spring modeled by the following equation

$$\frac{d^2x}{dt^2} + c\frac{dx}{dt} + x(t) = \cos(t)$$

where $c \geq 0$ is the unspecified damping coefficient. By using the method of Question #1(a-b), determine the amplitude of the steady periodic portion of the solution as a function of c and find the maximal amplitude. To what type of system does the maximal amplitude correspond?