MATH 319, Fall 2013, Assignment 7 Textbook Questions

Section 3.7, \#1 Write $u=3 \cos 2 t+4 \sin 2 t$ in the form $R \cos \left(\omega_{0} t-\delta\right)$.
\#4 Write $u=-2 \cos \pi t-3 \sin \pi t$ in the form $R \cos \left(\omega_{0} t-\delta\right)$.
\#11 A spring is stretched 10 cm by a force of 3 N . A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass is $5 \mathrm{~m} / \mathrm{s}$. If the mass is pulled down 5 cm below its equilibrium position and given an initial downward velocity of $10 \mathrm{~cm} / \mathrm{s}$, determine its position u at any time t. Find the quasi frequency μ and the ratio of μ to the natural frequency of the corresponding undamped motion.

Section 3.8, \#1 Write $\cos 9 t-\cos 7 t$ as a product of two trigonometric functions of different frequencies.
\#12 A spring-mass system has a spring constant of $3 \mathrm{~N} / \mathrm{m}$. A mass of 2 kg is attached to the spring, and the motion takes place in a viscous fluid that offers a resistance numerically equal to the magnitude of the instantaneous velocity. If the system is driven by an external force of $(3 \cos 3 t-2 \sin 3 t) \mathrm{N}$, determine the steady state response. Express your answer in the form $R \cos (\omega t-\delta)$.
\#15 Find the solution of the initial value problem

$$
u^{\prime \prime}+u=F(t), \quad u(0)=0, u^{\prime}(0)=0
$$

where

$$
F(t)=\left\{\begin{array}{lr}
F_{0} t, & 0 \leq t \leq \pi \\
F_{0}(2 \pi-t), & \pi<t \leq 2 \pi \\
0, & 2 \pi<t
\end{array}\right.
$$

Hint: Treat each time interval separately, and match the solutions in the different intervals by requiring u and u^{\prime} to be continuous functions of t.

