MATH 319, Fall 2013, Assignment 8 Textbook Questions

Section 5.1, \#2 Determine the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{n}{2^{n}} x^{n}
$$

\#7 Determine the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}(x+2)^{n}}{3^{n}}
$$

\#23 Rewrite the following expression as a sum whose generic term involves x^{n} :

$$
x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Section 5.2, (a) Find the power series solution of the following differential equation about the given point x_{0}; find the recurrence relation. (b) Find the first four terms in each of two solutions $y_{1}(x)$ and $y_{2}(x)$ (unless the series terminates sooner). (d) If possible, find the general term in each solution.
\#5

$$
(1-x) y^{\prime \prime}(x)+y(x)=0, \quad x_{0}=0
$$

\#8

$$
x y^{\prime \prime}(x)+y^{\prime}(x)+x y(x)=0 \quad x_{0}=1
$$

