MATH 319, Fall 2013, Assignment 9 Due date: Monday, November 25

Name (printed): _____

UW Student ID Number:

Discussion Section: (circle)					
Liu Liu:	301	302	303	304	
Huanyu Wen:	305	306	323	324	
J				-	
Dongfei Pei:	325	326	329		
2 0118101 2 011	010	0_0	0_0		
Kai Hsu:	327	328			

Instructions

1. Fill out this cover page **completely** and affix it to the front of your submitted assignment.

Correctness	
	/20

- 2. Staple your assignment together and answer the questions in the order they appear on the assignment sheet.
- 3. You are encouraged to collaborate on assignment problems but you must write up your assignment independently. **Copying is strictly forbidden!**

e emprecences	
	/5

l -	Total:	/25
,	Bonus:	/3

Suggested problems:

Section 6.1: 1-20 Section 6.2: 1-26 Section 6.3: 1-24 Section 6.4: 1-16

Problems for submission:

- Section 6.1: 6, 15 Section 6.2: 7, 14, 23 Section 6.3: 8, 17, 20 Section 6.4: 5, 9 (part (a) only) (Justify your answers for full marks!)
- **Bonus!** One notable exception to our list of Laplace transform identities has been

$$\mathcal{L}\left\{x^n f(x)\right\}$$

That is to say, we have no general identity for the Laplace transform of a standard function multiplied by a power of x.

Suppose that $\mathcal{L}\{-f(x)\} = F(s)$. Use the definition of the Laplace transform to show that $\mathcal{L}\{xf(x)\} = -F'(s)$. Use this to evaluate

$$\mathcal{L}^{-1}\left\{\frac{4s}{(s^2+4)^2}\right\}.$$

[*Hint:* See Section 6.2, Question # 28 for technical help.]