MATH 319, Fall 2013, Assignment 9

Due date: Monday, November 25

Name (printed): \qquad

UW Student ID Number: \qquad
Discussion Section: (circle)

Liu Liu:	301	302	303	304
Huanyu Wen:	305	306	323	324
Dongfei Pei:	325	326	329	
Kai Hsu:	327	328		

Instructions

1. Fill out this cover page completely and affix it to the front of your submitted assignment. \square
2. Staple your assignment together and answer the questions in the order they appear on the assignment sheet.
3. You are encouraged to collaborate on assignment problems but you must write up your assignment independently. Copying is strictly forbidden!

Total:	$/ 25$
Bonus:	$/ 3$

Suggested problems:

Section 6.1: 1-20
Section 6.2: 1-26
Section 6.3: 1-24
Section 6.4: 1-16
Problems for submission:
Section 6.1: 6, 15
Section 6.2: 7, 14, 23
Section 6.3: 8, 17, 20
Section 6.4: 5, 9 (part (a) only)
(Justify your answers for full marks!)
Bonus! One notable exception to our list of Laplace transform identities has been

$$
\mathcal{L}\left\{x^{n} f(x)\right\} .
$$

That is to say, we have no general identity for the Laplace transform of a standard function multiplied by a power of x.

Suppose that $\mathcal{L}\{-f(x)\}=F(s)$. Use the definition of the Laplace transform to show that $\mathcal{L}\{x f(x)\}=-F^{\prime}(s)$. Use this to evaluate

$$
\mathcal{L}^{-1}\left\{\frac{4 s}{\left(s^{2}+4\right)^{2}}\right\} .
$$

[Hint: See Section 6.2, Question \# 28 for technical help.]

