MATH 319, Fall 2013, Assignment 9 Textbook Questions

Section 6.1, \#6 Find the Laplace transform of $f(t)=\cos a t$, where a is a real constant.
\#15 Use integration by parts to find the Laplace transform of the given function; n is a positive integer and a is a real constant:

$$
f(t)=t e^{a t}
$$

Section 6.2, \#7 Find the inverse Laplace transform of the given function:

$$
F(s)=\frac{2 s+1}{s^{2}-2 s+2}
$$

\#14 Use the Laplace transform to solve the given initial value problem:

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0 ; \quad y(0)=1, \quad y^{\prime}(0)=1
$$

\#23 Use the Laplace transform to solve the given initial value problem:

$$
y^{\prime \prime}+2 y^{\prime}+y=4 e^{-t} ; \quad y(0)=2, \quad y^{\prime}(0)=-1
$$

Section 6.3, \#8 Sketch the graph of the following piece-wise defined function and then write $f(t)$ in terms of the unit step function $u_{c}(t)$:

$$
f(t)=\left\{\begin{aligned}
1, & 0 \leq t<1 \\
-1, & 1 \leq t<2 \\
1, & 2 \leq t<3 \\
-1, & 3 \leq t<4 \\
0, & t \geq 4
\end{aligned}\right.
$$

\#17 Find the Laplace transform of the following function:

$$
f(t)=(t-3) u_{2}(t)-(t-2) u_{3}(t)
$$

\#20 Find the inverse Laplace transform of the following function:

$$
F(s)=\frac{e^{-2 s}}{s^{2}+s-2}
$$

Section 6.4, \#5(a) Find the solution of the following initial value problem:

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}+2 y=f(t) ; \\
f(t)= \begin{cases}1, & 0 \leq t<10)=0, y^{\prime}(0)=0 \\
0, & t \geq 10\end{cases}
\end{gathered}
$$

\#9(a) Find the solution of the following initial value problem:

$$
\begin{gathered}
y^{\prime \prime}+y=g(t) ; \quad y(0)=0, y^{\prime}(0)=1 \\
g(t)= \begin{cases}t / 2, & 0 \leq t<6 \\
3, & t \geq 6\end{cases}
\end{gathered}
$$

