MATH 319, Fall 2013, Assignment 10 Textbook Questions

Section 7.1, \#3 Transform the following equation into a system of first order equations:

$$
t^{2} u^{\prime \prime}+t u^{\prime}+\left(t^{2}-0.25\right) u=0
$$

\#4 Transform the following equation into a system of first order equations:

$$
u^{(4)}-u=0
$$

Section 7.2, \#6(a) and (c) Consider the matrices

$$
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
3 & 2 & -1 \\
-2 & 0 & 3
\end{array}\right], B=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-2 & 3 & 3 \\
1 & 0 & 2
\end{array}\right] \text {, and } C=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 2 \\
0 & 1 & -1
\end{array}\right]
$$

Verify that (a) $(A B) C=A(B C)$ and (c) $A(B+C)=A B+A C$.
\#24 Verify that the given vector satisfies the given differential equation.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right] \mathbf{x}, \quad \mathbf{x}=\left[\begin{array}{c}
6 \\
-8 \\
-4
\end{array}\right] e^{-t}+2\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] e^{2 t}
$$

Section 7.3, \#17 Determine the eigenvalues and eigenvectors of

$$
A=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]
$$

\#20 Determine the eigenvalues and eigenvectors of

$$
B=\left[\begin{array}{cc}
1 & \sqrt{3} \\
\sqrt{3} & -1
\end{array}\right]
$$

