MATH 319, Fall 2013, Assignment 11 Not due

Name (printed): _____

UW Student ID Number:

Discussion Section: (circle)				
Liu Liu:	301	302	303	304
Huanyu Wen:	305	306	323	324
, , , , , , , , , , , , , , , , , , ,				
Dongfei Pei:	325	326	329	
~				
Kai Hsu:	327	328		

Instructions

1. Fill out this cover page **completely** and affix it to the front of your submitted assignment.

Correctness	
	/20

- 2. Staple your assignment together and answer the questions in the order they appear on the assignment sheet.
- 3. You are encouraged to collaborate on assignment problems but you must write up your assignment independently. Copying is strictly forbidden!

	/5

Completeness

1 -	Total:	/25
7	Bonus:	/3

Suggested problems:

Section 7.5: 1-8, 15, 16, 19-27, 29-31 Section 7.6: 1-6, 9, 10, 13-22 Section 7.7: 1-8, 11, 12, 14 Section 7.8: 1-4, 7-10, 13-15 Section 7.9: 1-12

Problems for submission:

Section 7.5: 3, 16, 21 Section 7.6: 9 Section 7.7: 6, 12 Section 7.8: 7(a) Section 7.9: 5 (Justify your answers for full marks!)

Bonus! Consider the mechanical pendulum/spring system

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx(t) = g(t) \tag{1}$$

where $m, c, k \ge 0$.

- (a) Convert (1) into a system of first-order differential equations.
- (b) Determine the characteristic polynomial for the eigenvalues. How does this expression compare to the polynomial in r obtained by assuming a solution of the form $x(t) = e^{rt}$? (*Hint:* You may assume g(t) = 0.)
- (c) Suppose that m = 1, c = 0, k = 9, $g(t) = \cos(3t)$, x(0) = 0, and x'(0) = 0. Determine the solution of the system derived in part (a). (*Hint:* You will need to use the trigonometric identities $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$ and $\cos^2(\theta) = \frac{1}{2}(1 + \cos(2\theta))$ to perform the integration and to simplify the result!)