MATH 319, Fall 2013, Assignment 10
 Textbook Questions

Section 7.5, \#3 Find the general solution of the given system of equations and describe the behavior of the solution as $t \rightarrow \infty$. Also draw the direction field and plot a few trajectories of the system:

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right] \mathbf{x}
$$

\#16 Solve the initial value problem and describe the behavior of the solution as $t \rightarrow \infty$.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
-2 & 1 \\
-5 & 4
\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

\#21 The system $t \mathbf{x}^{\prime}=A \mathbf{x}$ is analogous to the second order Euler equation (Section 5.4). Assuming that $\mathbf{x}=\xi t^{r}$, where ξ is a constant vector, then ξ and r must satisfy $(A-r I) \xi=\mathbf{0}$ in order to obtain nontrivial solutions of the given differential equation. Use this observation to solve the following system of differential equations.

$$
t \mathrm{x}^{\prime}=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right] \mathrm{x}
$$

Section 7.6, \#9 Find the solution of the given initial value problem then describe the behavior of the solution as $t \rightarrow \infty$.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Section 7.7, \#6 Find a fundamental matrix $\Psi(t)$ of the following given system of equations. Then find the fundamental matrix $\Phi(t)$ satisfying $\Phi(0)=I$.

$$
\mathrm{x}^{\prime}=\left[\begin{array}{cc}
-1 & -4 \\
1 & -1
\end{array}\right] \mathrm{x}
$$

\#12 Solve the initial value problem

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
-1 & -4 \\
1 & -1
\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

by using the fundamental matrix $\Phi(t)$ found in Problem 6 .

Section 7.8, \#7(a) Find the solution of the given initial value problem.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Section 7.9, \#5 Find the general solution of the given system of equations.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
t^{-3} \\
-t^{-2}
\end{array}\right], \quad t>0
$$

