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i. Definitions and Theo're'ms':: S

i1] (a) Consider a first-order differential equation ¢/ = f{z,y). State a condition sufficient
i - to guarantee the exzstencc of & sohltlon through the pomt (mo, Uo)-

C(% [7 févf' e
mfc)\w\(/\ ’; Koy (,@}
[1]'. (b) Consider a first-order differential equation M (z,y) dz + N(z,y) dy =0. State a

* condition sufficient to guarantee the equation is exact.

[4] 2. True/False:

(a) Consider a first-order differential equation ¢ = f(x, ). If f(z,y) is continuous at (K
every pomt ( ,) then every solutlon y( ) is defined over the whole domain z € R. o
{True /%\False ‘ :

P o

o dy 1 1
(b) The mteglatmg factor for the first-order differential equatmn Eil = —y+ -— 18
: IS 1 N ‘ 3
plz)= - [Truc] False] = \Eg — %x} ./ﬁ 2 /\}{ Je g i -}x
: ) ""Eﬂ/ . £

“(¢) A Bernoulli differential equatlon of the form ¢ -+ P(m)y = Q(m)y can always be
turned into a first-order linear differential equation by the transformation v = y*~
@/ False]

(d) Every differential equation of the form M(z,y) dz 4=DNe, y) dy = 0 can be made
exact by some chome of mtegratmg factor. [True /@‘fl’sej
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3. Slope Fields:

Consider the first-order differential equation

dy .
+ 1
_ dt J z° ( )

[2] _ . (a) Sketch a slope ﬁeld for thls dlfferentlal equatlon %?d ogerlay a feW potentlal solu-
. tions. : L - Vo
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2 (b) Show that y(w) =a? - 20 +2+4Ce zs.a, solution of (1) for all ¢ € R.
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[2] | (c¢) Find the particular solution of (1) for the initial condition y(1) = 0. What is the
: behavior of this solution in the limit x — co? "
(1)
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4. General Solutions:

Solve the following differential equations, including initial conditions if specified:

= VT % =5 x{ W
=0 f’/}f‘f f\f}& vobey')
f},\iw‘fé\ﬁr-_\ﬂﬁ«’g‘ /7“ =5 ~ v J\)
= WW w‘w«% ﬁ

(Hint: Recall standard exact .forml)
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5. Applications:

Consider a mixing tank with a total volume of 20 gallons, initially filled with 10 gailons
of pure wator. Suppose there is an inflow pipe which pumps in a 0.5 th/gailon hrine
(salt/water mixture) at a rate of 4 gallons per minute, and there is an outflow pipe
which removes the mixture from the tank at a rate of 2 gallon per minute.

1] (a) Use the given information to derive a differential equation which models the amount

of salt in the tank. \j { @g&!,} - H”i} s { w[ w Ty f’“"{
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