Math 319, Fall 2013, Term Test II Techniques in Ordinary Differential Equations

Date: Friday, November 15
Lecture Section: 001

Name (printed):	
UW Student ID Number:	

Discussion Section: (circle)

Liu Liu:	301	302	303	304
Huanyu Wen:	305	306	323	324
Dongfei Pei:	325	326	329	
Kai Hsu:	327	328		

Instructions

- 1. Fill out this cover page **completely** and make sure to circle your discussion section.
- 2. Answer questions in the space provided, using the last page for over-flow.
- 3. Show all the work required to obtain your answers.
- 4. No calculators are permitted.

FOR EXAMINERS' USE ONLY			
Page	Mark		
2	/6		
3	/7		
	, -		
4	/6		
	/.		
5	/6		
Total	/25		

1. Short Answer:

- [1] (a) Consider the mechanical model mx''(t) + cx'(t) + kx(t) = 0. State a relationship on the constants m, c, and k such that the mechanism is *critically damped*.
- [2] (b) Determine the Wronskian of $y_1(x) = \ln(x)$ and $y_2(x) = 1/x^2$. Can $y_1(x)$ and $y_2(x)$ constitute a fundamental solution set for a homogeneous second-order differential equation (for x > 0)?

[3] 2. True/False:

- (a) The complementary solution of $y''(x) 8y'(x) + 20y(x) = e^{4x}\sin(2x)$ is $y_c(x) = C_1e^{4x}\sin(2x) + C_2e^{4x}\cos(2x)$. [True / False]
- (b) The amplitude (i.e. maximal value) of the particular solution of $y''(x) + 2y'(x) + 5y(x) = \cos(\omega x)$ does not depend on ω . [True / False]
- (c) Every point $x_0 \in \mathbb{R}$ is an ordinary point of $(x^2 + 1)y''(x) + xy'(x) (x + 1)y(x) = 0$. [True / False]

3. Second-Order Differential Equations

[3] (a) Consider the following differential equation:

$$y''(x) + 4y'(x) + 5y(x) = g(x).$$

Determine the complementary solution $y_c(x)$ then set-up, but do not attempt to evaluate, the trial form $y_p(x)$ for the given choices of g(x) below.

(i)
$$g(x) = x^2 e^{-2x}$$

(ii)
$$g(x) = e^{-2x} \cos(x)$$

[4] (b) Given that $y_1(x) = 1/x$ and $y_2(x) = 1/x^5$ are fundamental solutions of $x^2y''(x) + 7xy'(x) + 5y(x) = 0$, determine the particular solution of

$$x^{2}y''(x) + 7xy'(x) + 5y(x) = x.$$

[Hint: Remember the standard form for when applying variation of parameters!]

4. Power Series Solutions

[2] (a) Determine the radius of convergence of the power series:

$$\sum_{n=2}^{\infty} \frac{(-1)^n 3^n}{(2n)!} (x-1)^n$$

[2] (b) Write the following expression as a single summation whose common term is x^n :

$$\sum_{n=2}^{\infty} (n-1)n^2 a_n x^{n-2} + x \sum_{n=0}^{\infty} n a_n x^{n-1}$$

[2] (c) Suppose that a particular differential equation has a power series solution centered at $x_0 = 0$ generated by the recursion relation

$$a_{n+2} = \frac{a_{n+1} - (n+1)a_n}{n+2}, \quad n \ge 0.$$

Determine up to the x^3 term of the solution $y(x) = \sum_{n=0}^{\infty} a_n x^n$.

5. Laplace Transforms:

[2] (a) Evaluate the following inverse Laplace transform:

$$\mathcal{L}^{-1}\left\{\frac{2}{s^2 - 4s + 8}\right\}$$

[4] (b) Use the Laplace transform method to evaluate the following initial value problem:

$$\frac{d^2y}{dx^2} - y(x) = e^x, \quad y(0) = 0, \ y'(0) = 1/2.$$

Math 319 Term Test II, Fall	ZU13
-----------------------------	------

Page 6 of 6 $\,$

Name: ____

THIS PAGE IS FOR ROUGH WORK