Math 319, Fall 2013, Term Test II Techniques in Ordinary Differential Equations

Date: Friday, November 15 Lecture Section: 002

Name (printed):	
UW Student ID Number:	

Discussion Section: (circle)

Liu Liu:	301	302	303	304
Huanyu Wen:	305	306	323	324
Dongfei Pei:	325	326	329	
Kai Hsu:	327	328		

Instructions

- 1. Fill out this cover page **completely** and make sure to circle your discussion section.
- 2. Answer questions in the space provided, using the last page for over-flow.
- 3. Show all the work required to obtain your answers.
- 4. No calculators are permitted.

FOR EXAMINERS, USE ONLY				
Page	Mark			
2	/6			
3	/7			
4	/6			
5	/6			
Total	/25			

1. Short Answer:

[1] (a) Suppose that $y_1(x)$ and $y_2(x)$ are two solutions of the homogeneous second-order differential equation

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0$$

satisfying $W(y_1, y_2)(x) \neq 0$. State the general solution form of the differential equation.

[2] (b) Determine the values a for which the following differential equations exhibit oscillatory behavior:

(i)
$$y''(x) + ay'(x) + y(x) = 0$$

(ii)
$$ay''(x) - 2y'(x) + 2y(x) = 0$$

- [3] 2. True/False:
 - (a) The mechanical mechanism x''(t) + cx'(t) + 4x(t) = 0 is critically damped at the value c = 4. [True / False]
 - (b) The amplitude (i.e. maximal value) of $y(x) = 3\cos(x) 4\sin(x)$ is 5. [True / False]
 - (c) Every point $x_0 \in \mathbb{R}$ is an ordinary point of $(x^2 1)y''(x) + xy'(x) (x + 1)y(x) = 0$. [True / False]

3. Second-Order Differential Equations

[3] (a) Consider the following differential equation:

$$y''(x) + 6y'(x) + 5y(x) = g(x).$$

Determine the complementary solution $y_c(x)$ then set-up, but do not attempt to evaluate, the trial form $y_p(x)$ for the given choices of g(x) below.

(i)
$$g(x) = e^{-5x} \sin(x)$$

(ii)
$$g(x) = xe^{-x}$$

[4] (b) Given that $y_1(x) = 1 + x$ and $y_2(x) = e^x$ are fundamental solutions of xy''(x) - (1+x)y'(x) + y(x) = 0, determine the particular solution $y_p(x)$ of

$$xy''(x) - (1+x)y'(x) + y(x) = 2x^2e^x.$$

[Hint: Remember the standard form when applying variation of parameters!]

4. Power Series Solutions

[2] (a) Determine the radius of convergence of the power series:

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(n+1)}{n!} x^n$$

[2] (b) Write the following expression as a single summation whose common term is x^n :

$$x\sum_{n=1}^{\infty} n(n+1)a_n x^{n-2} + \sum_{n=2}^{\infty} (n-1)a_n x^{n-2}$$

[2] (c) Suppose that a particular differential equation has a power series solution centered at $x_0 = 0$ generated by the recursion relation

$$a_{n+2} = \frac{a_{n+1} + a_n}{(n+2)(n+1)}, \quad n \ge 0.$$

Determine up to the x^3 term of the solution $y(x) = \sum_{n=0}^{\infty} a_n x^n$.

5. Laplace Transforms:

[2] (a) Evaluate the following inverse Laplace transform:

$$\mathcal{L}^{-1}\left\{\frac{s+2}{(s-1)^2+9}\right\}$$

[4] (b) Use the Laplace transform method to solve the following initial value problem:

$$2y''(x) - 3y'(x) + y(x) = 0, \quad y(0) = 0, \ y'(0) = 1/2.$$

Math 319 Term Test II, Fall	ZU13
-----------------------------	------

Page 6 of 6 $\,$

Name: ____

THIS PAGE IS FOR ROUGH WORK