
MATH 319, WEEK 2:
Initial Value Problems,

Existence/Uniqueness, First-Order Linear
DEs

1 Initial-Value Problems

We have seen that differential equations can, in general, given rise to multi-
ple solutions. This should be reasonable disconcerting at first glance. After
all, we imagine differential equations as representing some sort of physical
phenomenon, and when we throw a projectile, or release a pendulum, or con-
nect an electrical circuit, we do not observe multiple solutions. We observe
exactly one. So how do we resolve the mathematical peculiarity of multiple
solutions with the physical observation that only one thing can happen at a
time?

The answer is that we define the differential equation together with the
relevant initial conditions.

Definition 1.1. The initial-value problem (IVP) associated with a first-
order differential equation is the problem of solving

dy

dx
= f(x, y), subject to y(x0) = y0

where x0, y0 ∈ R.

There are a few notes worth making here:

• The initial-value problem corresponds to picking the single trajectory
which goes through the point (x0, y0) in the slope field diagram! We
now know exactly how to fill out the slope field diagram with solutions.

• The terminology initial-value is chosen to reflect the reality that we
are usually interested in centering the problem at zero (i.e. setting
x0 = 0). In problems where time is the independent variables, we have
t0 = 0, which is truly the initial value. We can, however, choose x0
equal to another value (e.g. conditions like y(3) = −7 or y(−1) = 10).
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• In general, we need as many initial conditions as we have constants in
the general solution. For second-order differential equations, we will
typically need two initial conditions, one on the variable itself, and
one on the derivatives. For instance, for gravitational force problems
where x(t) is the height of an object, we need

x′′ = −g, subject to x(t0) = x0, x
′(t0) = v0

to fully determine the solution to the initial value problem.

• A solution to a differential equation is called a general solution if
it encapsulates all possible solutions to the corresponding initial-value
problems. A solution is called a particular solution if it is associated
to a specific initial value problem.

Example 1: Solve the initial value problem

dy

dx
= y, y(0) = 3.

Solution: We already know that the general solution of the differential
equation is y(x) = kex where k ∈ R. It only remains to consider the initial
condition y(0) = 3. Plugging in x = 0 gives us

y(0) = 3 = ke(0) =⇒ k = 3.

It follows the the particular solution we are interested in is y(x) = 3ex.

Example 2: Consider a projectile thrown up into the air from the top
of a cliff which is 50 meters from the ground. Suppose the projectile is sub-
ject only to the force of gravity (F = −mg = −9.8m kg·m/s2) and suppose
the initial upward velocity of the throw is 10 m/s. Solve the initial value
problem. How long does it take the projectile to reach the bottom of the
cliff?

Solution: From Newton’s second law, we have that F = ma so that

−mg = mx′′.

With the given information, and removing the dimensions (which fortunately
do match up) we can restate this as an initial value problem as

x′′ = −9.8, x(0) = 50, x′(0) = 10.
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This can be directly integrated to get

x′(t) =

∫
d2x

dt2
dt = −

∫
9.8 dt = −9.8t+ C.

We can now use the first piece of initial information to get

x′(0) = 10 =⇒ 10 = −(9.8)(0) + C =⇒ C = 10.

It follows that we have
x′(t) = −9.8t+ 10.

We can integrate this again to get

x(t) =

∫
dx

dt
dt =

∫
(−9.8t+ 10) dt = −4.9t2 + 10t+D.

The other piece of initial information gives us

x(0) = 50 =⇒ 50 = −4.9(0)2 + 10(0) +D =⇒ D = 50.

It follows that the solution to the initial value problem is

x(t) = −4.9t2 + 10t+ 50.

As we might have expected, this is a parabola opening down. The ver-
tex corresponds to the maximum height before it starts its descent to the
ground. To answer the final question, we recognize that reaching the ground
corresponds to setting x = 0. It follows that we need to find a time such
that

−4.9t2 + 10t+ 50 = 0.

The quadratic formula gives the solutions t = −2.33 and t = 4.37. We can
reject the negative value since it occurs before we release the projectile and
conclude that the projectile will reach the ground in 4.37 seconds.

2 Existence and Uniqueness of Solutions (Section
2.8 in Text)

So far we have developed an intuition on what it means to be a solution of
a differential equation, how to check if a function is in fact a solution, and
how to interpret solutions geometrically. We have not, however, given any
consideration to the following far more basic questions:
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1. Does a solution always exist? And if it exists, does it exist everywhere?

2. If we have a solution, is it necessarily unique?

At first glance, there questions may seem a little absurd. We are asking
whether we should even consider the question of finding a solution in the
first place!

It turns out there is a significant amount of subtlety involved. Consider
the following examples.

Example 3: If possible, determine a solution of(
y′
)2

+ y2 = −1.

Solution: At first glance, this seems like a sensible problem. It is clearly
a differential equation—first-order and ordinary, like many we have seen
already. In principle, if somebody proposed a function y(x), we could check
in the equation to verify whether it was indeed a solution or not. It is only
when we dig a little deeper that we see something is terribly, horrendously
wrong. We might notice firstly that, if we were asked to solve the algebraic
equation

x2 + y2 = −1

would would immediately reject the question as senseless. The LHS is neces-
sarily positive while the RHS is clearly negative—no solution exists. There
is no difference when we consider the differential equation given! We do
not need to attempt to find a solution in order to know one does not exist.
Differential equations are not guaranteed to have even a single
solution. (Although most of the differential equations we will consider in
this course will have solutions!)

Example 4: We know that y(x) = tan(x) is a solution of y′ = 1 + y2

(see Figure 1). We might, however, notice something strange about it: it
is not connected! We encounter a rather abrupt jump when we hit π/2
and then switch instantaneously from +∞ to −∞. This is not a significant
concern to our mathematical analysis (everything we have done is correct!)
but it might be a concern to the physical problem were are modeling. For
instance, suppose we are modeling the position of some object—we cannot
very well have the object explode to infinity and wrap around the other
side. In applied examples we will be careful to consider only connected (i.e.
continuous) portions of solutions, lest we run into such absurdities. At any
rate, this is a point worth emphasizing. Solutions, even if they exist,
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are not guaranteed to exist everywhere!

(a) (b)

y1(x) y2(x)

y3(x)

Figure 1: Slope field of y′ = 1 + y2 with y1(x) = tan(x+2.5), y2(x) = tan(x),
and y3(x) = tan(x − 2.5) overlain. Solutions are continuous only a finite
interval.

Example 5: Show that, for any C ∈ R,

y(x) =

{
0, x ≤ C
(x− C)2, x > C

is a solution of y′ = 2
√
y. Comment on the uniqueness of solutions.

Solution: We have that y = 0 implies y′ = 0 and
√
y = 0 trivially so

y = 0 always satisfies y′ = 2
√
y. To the other half of the proposed solution,

we have
dy

dx
= 2(x− C)

and
2
√
y = 2

√
(x− C)2 = 2|x+ C| = 2(x− C)

where we have removed the absolute value because x > C implies x − C,
which implies |x−C| = x−C. It follows that both halves of the expression
satisfy the differential equation, and since we have continuity and equality
in derivatives at x = C, the function is smoothly defined at the transition.
It follows that it is a solution.

We notice something a little strange when we try to consider the slope
field, however (see Figure 2). The solution is a constant (y = 0) to the left
of C and the right-half of a parabola to the right of C, but when does the
transition happen? Suppose we are the point (0, 0) and are travelling along

5



the solution y = 0 to the right. How do we choose when we branch off to
the parabola? Or even if we do? We have that y = 0 is always a solution,
after all, so why even bother considering the parabolic answer?

The problem is that solutions overlap at y = 0. That is to say, they are
not separated, as they were in the previous examples. Every solution with
C ≥ 0, for instance, goes through the point (0, 0). So not only can we have
solutions be non-unique due to the existence of a family of solutions, we
can have them be non-unique when we restrict to solutions through a single
point in the solution space as well (although this is uncommon!).

x

y y(x)=(x+C)2

Figure 2: Slope field of
dy

dx
= 2
√
y with y = 0 and the right-halves of y1(x) =

(x + 2.5)2, y2(x) = x2, and y3 = (x − 2.5)2 overlain. Every solution with
C > x goes through the point (x, 0) so that solutions intersect.

This raises an interesting question: Without prior knowledge about a
solution, can be guaranteed a solution exists and/or that it is unique? The
answer (fortunately) is yes and is the content of the following theorem.

Theorem 2.1 (Theorem 2.8.1 in Text). Consider the first-order ODE y′ =
f(x, y) and an initial point (x0, y0). Let R denote a non-empty region around
the point (x0, y0). Then:

1. if f(x, y) is continuous in R, then there is a subregion R′ ⊆ R also con-
taining (x0, y0) in which there is a solution of the DE through (x0, y0);

2. if, furthermore, ∂f/∂y is continuous in R, then there is a subregion
R′ ⊆ R also containing (x0, y0) in which there is a unique solution of
the DE through (x0, y0).
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There are a few things worth noting about this theorem:

• The subregion of existence (and/or uniqueness) is the bare minimum
guaranteed by the Theorem. That is to say, it is quite possible that so-
lutions exist for a much broader region of the (x, y)-plane, even though
the Theorem does not guarantee it. In fact, it is normally the case that
solutions only cease to exist in very, very small regions.

• An important element of Theorem 2.1 is that we have the DE in the
form y′ = f(x, y). In other words, we must solve for y′ and have it
isolated in the expression. The Theorem is also insufficient to consider
cases of higher-order DEs or PDEs. These equations have their own
theorems!

• This theorem is most powerful when we do not know the actual solution
y(x)! As we will become increasingly interesting in finding solutions as
the course progresses, we will not consider questions of existence and
uniqueness very often. In the general study of differential equations,
however, the question of existence and uniqueness is a very challenging
one which is still the source of significant research.

Examples: Use Theorem 2.1 to make claims about the existence and
uniquess of the three examples considered above, namely, (y′)2 + y2 = −1,
y′ = 1 + y2, and y′ = 2

√
y.

Solution: The first example must be rewritten into the form y′ =
f(x, y). We have that

(y′)2 + y2 = −1 =⇒ y′ = ±
√
−1− y2

so that f(x, y) =
√
−1− y2. Since this clearly is not continuous for any

(x, y)—it does not even exist!—we may conclude no solutions exist at all.
The second example is already in the form y′ = f(x, y). We can further-

more see that
f(x, y) = 1 + y2

and
∂f

∂y
= 2y

are both continuous. The Theorem therefore allows us to conclude that
there is a unique solution through every point in the (x, y)-plane. (Note
that, although we found earlier that the solutions exist on finite intervals
only, it is true that every point has a unique solution through it!)

7



The third example is also already in the form y′ = f(x, y). We have that

f(x, y) = 2
√
y

and
∂f

∂y
=

1
√
y
.

We notice that part 1. of the theorem guarantees the existence of solutions
through all points y ≥ 0 but part 2. only guarantees uniqueness of solutions
through points satisfying y > 0. This is exactly what we found with the
explicit solution! Solutions are well separated in the positive half-plane but
bunch up when y = 0. Even through the solutions exist there, we are not
able to distinguish between them.

3 First-Order Linear Equations

Consider the first-order differential equation

dy

dx
=

1− y
x

.

We are now interested in solving this DE from first principles. In other
words, we want to find a function y(x) which satisfies the expression when
none is given to us. How can we do this?

We might notice that we can rewrite the expression as:

x
dy

dx
+ y = 1.

There is nothing in the expression dictating that we have to do this (yet!)
but we can notice at least one nice thing about this form: it was easy to
classify! Everything involving y and its derivatives is isolated (with respect
to terms involving y), so it is a first-order linear differential equation.

There is a little bit of “cheating” that has been done in rearranging the
expression this way, but it is a suggestive bit of cheating. Let’s consider just
the left-hand side of the above expression, i.e.

x
dy

dx
+ y.

If we stare this for long enough, or were born with unparalleled mathemat-
ical powers, we might notice that this can be written in a more compact
form. Without justifying, for a moment, why we would want to do this, we
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might notice that this expression is the end result of the product rule for
differentiation on the term xy. That is to say, we have

d

dx
[xy] = x

dy

dx
+ y.

In other words, we can take the two terms on the left-hand side and condense
them into a single term, at the expense of having to recall the product rule
for differentiation. We can now rewrite the differential equation above as

d

dx
[xy] = 1.

It should take far less mathematical insight to recognize that this is a
huge improvement over our previous expression. The reason should be clear:
we can integrate it! If we integrate the left-hand and right-hand sides by x,
the Fundamental Theorem of Calculus tells us the differential on the left-
hand side disappears, and the right-hand side can be evaluated as long as
we know an anti-derivative of whatever the term there happens to be. That
is to say, we have ∫

d

dx
[xy] dx =

∫
1 dx

=⇒ xy = x+ C, C ∈ R

which, after dividing by x, implies that we have the general solution

y(x) = 1 +
C

x
, C ∈ R.

It can be easily verified that this is in fact a solution of the DE (check!).
At this point, we should feel a little excited. We are on the path toward

discovering a method for solving first-order linear differential equations. So
far, the steps we took were:

1. Write with y and y′ on one side,

2. Combine term on left by reversing the product rule,

3. Integrate,

4. Solve for y.

We will see in a few minutes that this is not sufficient to solve all first-order
linear differential equations, but the intuition—especially the trick with the
product rule—will prove to be the key to the general method.

9



Now consider the example

x
dy

dx
+ 2y = 1.

This is only subtly different that the previous example—in fact, the only
difference is the coefficient of the y term is now two. This subtle difference,
however, is enough to sabotage our earlier intuition with regards to a solution
method, since there is no function f(x) such that

d

dx
[f(x) y] = x

dy

dx
+ 2y.

So what can we do?
Let’s consider changing the expression (again!) but in a different way.

Let’s consider multiplying through by a single term that is a function of x.
In this case, let’s choose the function to be x itself. This gives us

x2
dy

dx
+ 2xy = x.

If there were any questions with regards to why we would want to do that, I
hope they have now been answered. Using our earlier intuition with regards
to the product rule, we can clearly see that we have

d

dx

[
x2y
]

= x2
dy

dx
+ 2xy = x.

Again, we can integrate to get the solution. We have∫
d

dx

[
x2y
]
dx =

∫
x dx

=⇒ x2y =
x2

2
+ C, C ∈ R

so that the desired solution is

y(x) =
1

2
+
C

x2
, C ∈ R.

So what was different about this example? The difference was that we
had to multiply by some factor before we could use the product rule trick that
we just discovered to get to a form we could integrate. This multiplicative
factor is called an integration factor and is generally denoted µ(x). We
still have to wonder how we could find integration factors. After all, how
did I know to multiply by the factor x?
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It is perhaps best now to scale back and consider first-order linear
systems at their most general. In general, we have

dy

dx
+ p(x)y = q(x). (1)

This is only slightly different than the forms we have been using. We now
want to get all the terms involving y on the left-hand side, and also to divide
through by whatever the coefficient of the derivative is so that the derivative
appears by itself. Now we ask the question: What do we have to multiply
by in order to guarantee that the two terms on the left-hand side can be
combined using the product rule (in reverse)?

The answer is not obvious at first glance, but it is easy to verify. The
integration factor we need is

µ(x) = e
∫
p(x) dx.

The details are easy to check. We know by the Fundamental Theorem of
Calculus and the chain rule that µ′(x) = p(x)µ(x) so, if we multiply the
entire expression by µ(x), we have

µ(x)
dy

dx
+ p(x)µ(x)y = µ(x)q(x).

The left-hand side can be simplified by noting that

d

dx
[µ(x)y] = µ(x)

dy

dx
+
dµ

dx
y = µ(x)

dy

dx
+ p(x)µ(x)y.

It follows that the differential equation can be rewritten as

d

dx
[µ(x)y] = µ(x)q(x).

We can then integrate to get

µ(x)y =

∫
µ(x)q(x) dx

and isolate y to get the general solution

y(x) =
1

µ(x)

∫
µ(x)q(x) dx

= e−
∫
p(x) dx

∫ (
e
∫
p(x) dxq(x)

)
dx.

That’s it! So long as we can evaluate these integrals, we can solve any
first-order linear differential equation.

There are a few notes worth making:
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• It is not necessary to include the arbitrary constant in the integration
factor integral (i.e. take C = 0) or the absolute value for logarithms.
Both cases amount to multiplying the expression by an arbitrary con-
stant, which does not change anything.

• On the other hand, it is very important to remember to add the con-
stant +C to the other integration (resolving the product rule).

• It is important to have the equation in the form (1). Otherwise, the
given integration factor will not work. In particular, notice that the
coefficient of y′ must be one.

• It is sufficient, but not recommended, to remember the general form
of the solution. All of the steps in this derivation are based on tricks
we know how to do, even if recognizing how to apply them might have
been a little tricky.

• Whether these equations are autonomous or homogeneous depends on
the forms of p(x) and q(x), although this particular method will work
regardless.

Examples: Determine the integration factor µ(x) for the following dif-
ferential equations and use it to find the general solution y(x) and the par-
ticular solution for the given initial condition.

1.
dy

dx
+

1

x
y =

1

x
, y(1) = 1.

2.
dy

dx
+ y = e−3x, y(0) = 2

3. (x+ 1)
dy

dx
− xy = ex, y(1) = 0.

Solution (1): This is already in standard form, so we are ready to
determine the integrating factor. We have

µ(x) = e
∫
p(x) dx

= e
∫

1
x
dx

= eln(x) = x.

We can ignored the normally required |x| in the ln(x) term by noticing that
the two absolute value cases (x > 0 and x < 0) amount to multiplying
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the whole differential equation by a negative, which does not change it.
Multiplying the entire expression by µ(x) = x gives us

x
dy

dx
+ y = 1

which we have already seen. This was our original toy example. We already
know that the general solution is

y(x) = 1 +
C

x
.

Substituting the intial value y(1) = 1 gives us

y(1) = 1 = 1 + C =⇒ C = 0.

It follows that the particular solution is

y(x) = 1.

Solution (2): This is already in standard form, so we are ready to
determine the integrating factor. We have

µ(x) = e
∫
p(x) dx

= e
∫
1 dx

= ex.

Multiplying the entire expression by µ(x) = ex gives us

ex
dy

dx
+ exy = ex · e−3x = e−2x.

Recognizing that the left-hand side now must be the product rule form
(expanded out), we have

d

dx
[exy] = e−2x.

We could jump right to this if we wanted to, but it is important to rec-
ognize the intermediate step to check that we have determined the correct
integration factor. We can integrate this to get∫

d

dx
[exy] dx =

∫
e−2x dx

=⇒ exy = −e
−2x

2
+ C
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=⇒ y(x) = −e
−3x

2
+ Ce−x.

Using the initial condition y(0) = 2 gives

y(0) = 2 = −1

2
+ C =⇒ C =

5

2
.

The particular solution is therefore

y(x) = −e
−3x

2
+

5e−x

2
.

Solution (3): This is not in standard form, so we need to do a little
work. Dividing by (x+ 1) we arrive at

dy

dx
− x

x+ 1
y =

ex

x+ 1
.

In order to determine the integrating factor, we will need to determine the
integral of −x/(x+ 1). Using the substitution u = x+ 1, we have

−
∫

x

x+ 1
dx =

∫
1− u
u

du =

∫ (
1

u
− 1

)
du = ln(u)−u = ln(x+1)−(x+1).

Recognizing that constants (i.e. the −1) do not matter for integrating fac-
tors, we arrive at

µ(x) = eln(x+1)−x = (x+ 1)e−x.

Multiplying the entire expression by µ(x) = (x+ 1)e−x gives us

(x+ 1)e−x
dy

dx
− xe−xy = 1.

It follows that we have

d

dx

[
(x+ 1)e−xy

]
= 1

which can be checked. Integrating with respect to x gives

(x+ 1)e−xy = x+ C

so that the general solution is

y(x) =
ex

x+ 1
(x+ C) .
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The initial condition y(1) = 0 gives

y(1) = 0 =
e

2
(1 + C) =⇒ C = −1.

It follows that the particular solution is

y(x) = ex
(
x− 1

x+ 1

)
.

Other examples are available in Section 2.1 of the text.
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