
MATH 319, WEEK 3:
Separable DEs, Substitution Methods

1 Separable Equations (2.2 in text)

Re-consider the first-order ODE

dy

dx
=

1− y
x

.

We previously showed that this equation could be rearranged into the stan-
dard form y′ + p(x)y = q(x) of a first-order linear DE. We could then find
the solution by determining an integrating factor µ(x) and integrating.

Now we will consider another common method which can often be ap-
plied to first-order ODEs to change the problem into one of integration.
This method depends on breaking the problems into two separate integra-
tion problems, in fact: one with respect to y, and one with respect to x. We
notice that, as written, the right-hand side of the ODE depends on both x
and y so we cannot integrate this directly with respect to x to determine the
general solution. But we might notice that we can still make the problem
“look like” an integration problem with respect to x by removing the y from
the right-hand side and moving the differential dx to the other side. This
leaves us with

dy

1− y
=
dx

x
.

Furthermore, not only does the right-hand side look like an integral question
(with respect to x), but the left-hand side looks like an integral question as
well (with respect to y). In fact, that is exactly how we will treat the
equation! When we integrate (with respect to y on the left, and x on the
right), we obtain∫

1

1− y
dx =

∫
1

x
dx =⇒ − ln |1− y| = ln |x|+C =⇒ |1− y| = k

|x|

where k = e−C > 0. There are a few technical details to sort out yet with
the absolute value. In general, these will not be too important, but for
completed we will fill in the details for this particular example. We have the
following four cases:

y > 1, x > 0 =⇒ −(1− y) =
k

x
=⇒ y = 1 +

k

x
, k > 0
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y > 1, x < 0 =⇒ −(1− y) = −k
x

=⇒ y = 1− k

x
, k > 0

y < 1, x > 0 =⇒ (1− y) =
k

x
=⇒ y = 1− k

x
, k > 0

y < 1, x < 0 =⇒ (1− y) = −k
x

=⇒ y = 1 +
k

x
, k > 0

Recognizing that y = 1 (i.e. k = 0) is a trivial solution, we have that the

sign of k does not actually matter. The general solution is y = 1 +
k

x
for

k ∈ R. This is exactly the answer we obtained when we solved this equation
earlier!

There are a few notes worth making:

• The general trick we have performed is to separate all of the depen-
dence on y on one side of the expression and all of the dependence on
x on the other. Such differential equations are called separable and
have the general form

f(y)
dy

dx
= g(x) or f(y) dy = g(x) dx.

• While everything “looks” good, we have been very lax in our jus-
tification of this separation (i.e. in “splitting” the differential, and
integrating with respect to separate variables on the separate sides).
A rigorous justification of the procedure can be made by application
of the chain rule.

• It is a fairly general propery that a rigorous consideration of absolute
value overcomes the seeming loss of negativity when we raise our arbi-
trary constants into the exponent. We will not perform the cases for
further examples.

• I warned you that integration would be important for solving differen-
tial equations, and there is no class of systems that better exemplifies
that than separable equations. Not only do we have to integrate to
solve a separable equation, but in general we have to integrate twice.

Further examples are contained Section 2.2 of the textbook.

Example 2: Solve the initial value problem

dy

dx
= −y2 (1 + 2x2)

x
, y(1) = 1.
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Solution: We can check very quickly that this cannot be manipulate
into the form of a general first-order linearly differential equation. The
reason is clear—the term y2 is non-linear in y. It therefore does not fit into
this class of equations.

Rather, we notice that, if we divide the equation by y2, and move the
differential dx to the right-hand-side, we have

1

y2
dy = −(1 + 2x2)

x
dx.

This is perfect! We have isolated the dependence on y on the LHS, and the
dependence on x on the RHS. Now it is only a matter of integrating (twice!).
We have ∫

1

y2
dy = −

∫
(
1

x
+ 2x) dx

=⇒ −1

y
= − ln(x)− x2 + C

=⇒ y(x) =
1

ln(x) + x2 + C̃

where C̃ = −C. The initial condition y(1) = 1 gives

1 =
1

1 + C

so that C = 0. It follows that the particular solution is

y(x) =
1

ln(x) + x2
.

2 Substitution Methods

Many first-order differential equations do not fall directly within the classes
of separable or first-order linear systems. Nevertheless, many common iden-
tifiable classes of differential equations can be manipulated into one of these
two forms via the use of a carefully selected variable substitution. We will
look at the following examples:

1. (Power) Homogeneous equations: Differential equations of the
general form

dy

dx
= F

(y
x

)
.
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A substitution of the form v =
y

x
produces a separable differential

equation in v and x of the form

x
dv

dx
= F (v)− v.

2. Bernoulli equations: Differential equations of the general form

dy

dx
+ P (x)y = Q(x)yn.

A substitution of the form v = y1−n produces a first-order linear dif-
ferential equation in v and x of the form

dv

dx
+ (1− n)P (x)v = (1− n)Q(x).

There are a few notes worth making before we delve too deeply into these
methods.

• While the given formulas are known and sufficient to solve most prob-
lems, as with first-order linear equations it is hoped that it is the
method which is memorized, not the end formula. In other words, re-
member the required variable substitutions for the two types of equa-
tions.

• As with any problem involving variable substitutions involving deriva-
tives, it is helpful to write out the tree of variable dependences. In
particular, for the differential equations we are looking at, where we
are looking for a function y = y(x) (i.e. y as a function of x), if we
define a variable transformation v = v(x, y), we have the tree given in
Figure 1, so that (according to the chain rule) the total derivative of
v with respect to x is given by

dv

dx
=
∂v

∂y

dy

dx
+
∂v

∂x
.

3 (Power) Homogeneous Differential Equations

Consider the differential equation

2xy
dy

dx
= x2 + y2.
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v

y

x

x

Figure 1: Variable dependence tree for v = v(x, y), where y = y(x).

It should not take much arguing to convince yourself that this differential
equation is neither separable nor first-order linear. We need an alternative
method for such differential equations.

One possibility is to choose an appropriate variable substitution. In this
case, the necessary substitution is

v(x, y) =
y

x
.

With this variable substitution, we have

y = xv =⇒ dy

dx
= x

dv

dx
+ v

so that the differential equation can be rewritten in terms of the variables v
and x as

2x(xv)

(
x
dv

dx
+ v

)
= x2 + (xv)2

=⇒ 2x3v
dv

dx
= x2 + x2v2 − 2x2v2

=⇒ 2x3v
dv

dx
= x2(1− v2)

=⇒ 2v

1− v2
dv =

1

x
dx.

Why this substitution helps us should now be clear. While the differential
equation was not easy to solve in the variables y and x, in the variables v
and x it reduces to a separable differential equation, which is among the
most straight forward classification of differential equations to identify and
solve. We still have some work to do, however. Continuing, we have∫

2v

1− v2
dv =

∫
1

x
dx
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=⇒ − ln(1− v2) = ln(x) + C,

=⇒ 1− v2 =
k

x
.

Now that the integration step has been resolved, we would like to return to
the original variables x and y. We started with v = y/x, so we now have

1−
(y
x

)2
=
k

x

=⇒ x2 − y2 = k
x2

x
= kx.

We have the final general solution

y = ±
√
x2 + k̃x

where k̃ = −k.
We should stop to make a few notes on this process.

• This differential equation belongs to a class of first-order differential
equations called (power) homogeneous differential equations.
Every (power) homogeneous differential equation can be written in
the form

dy

dx
= F

(y
x

)
by dividing by an appropriate power of x on the top and bottom of

the previous form. The substitution v =
y

x
is guaranteed to reduce

such differential equations into a separable differential equation in v
and x! (In other words, the technique we used in the example will
always work, although, as we saw, we may still run into some tricky
integration.)

• It is important to recognize differential equations which look (power)
homogeneous but which in fact are not. For example, the differential
equations

dy

dx
= x+ y

and
dy

dx
= x2 + 2xy + y2

are not (power) homogeneous because there is denominator on the
right-hand side with powers of x and y (the power is effectively zero,
whereas the power of the numerator is two).
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• I will make the distinction between homogeneous and power homoge-
neous differential equations. The reason for this is unfortunate: within
the study of differential equations there are two accepted definitions of
what constitutes a homogeneous differential equation, and these defini-
tions are very different. Usually context will dictate which meaning is
implied, but just to be clear I will attempt to use power homogeneous
to refer to the class of differential equations we were just introduced
to.

4 Bernoulli Differential Equations

We have seen how (power) homogeneous first-order differential equations
can be transformed into separable equations by application of a fairly simple
variable substitution. It turns out that there is a general class of differential
equations which can be transformed into our other canonical solution class,
first-order linear equations.

Consider the differential equation

3xy2
dy

dx
= 3x4 + y3.

It should not take much arguing (again) to convince ourself that this equa-
tion is not separable, is not first-order linear, and is not even homogeneous
(although it is close). Based on the methods we have established so far, we
are basically stuck, but we are able not going to stop there. Let’s try to
rearrange this equation to get it as close to the first-order linear form as
possible. We have

dy

dx
= x3y−2 +

1

3x
y =⇒ dy

dx
− 1

3x
y = x3y−2.

We actually have not done too poorly! In fact, it is only the term on the
right-hand side that presents a problem. In particular, we are not happy
with the y−2 and would like to make it go away.

Consider the substitution v = y3. We want to rewrite this differential
equation in y and x as a differential equation in v and x. This will require
solving for the differential and all of the y terms. We have

y = v1/3 =⇒ dy

dx
=

(
1

3
v−2/3

)
dv

dx
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and y−2 = v−2/3. It follows that the differential equation can be rewritten
as (

1

3
v−2/3

)
dv

dx
− 1

3x
v1/3 = x3v−2/3.

Multiplying across by 3v2/3 we arrive at

dv

dx
− 1

x
v = 3x3.

When we look at this, we notice that, quite remarkably, the non-linear term
has disappeared. This is a linear equation in v and x! We know how to solve
these types of equations. We have the integration factor

µ(x) = e−
∫

1
x
dx = e− ln(x) =

1

x
.

This gives us

1

x

dv

dx
− 1

x2
v = 3x2 =⇒ d

dx

[
1

x
v

]
= 3x2

=⇒ 1

x
v = x3 + C =⇒ v = x4 + Cx.

We are not, of course, completely done. The original questions was a dif-
ferential equation with respect to y and x, so we need to change by to our
original variables. We have

y3 = x4 + Cx =⇒ y(x) =
3
√
x4 + Cx.

This was a rather remarkable solution method, but what intuition was
underlying it? It turns out that this differential equation belongs to a class of
differential equations called Bernoulli differential equations. We pause
to make the following notes about them:

• The general form of a Bernoulli differential equation is

dy

dx
+ P (x)y = Q(x)yn

and the required substitution is v = y1−n. This is guaranteed to
produce a first-order linear differential equation in v and x of the form

dv

dx
+ (1− n)P (x)v = (1− n)Q(x).
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• Notice that there are two values which are troublesome for this trans-
form, n = 0 and n = 1. For n = 0 we have v = y, which is trivial, and
for n = 1 we have v = 1, which is meaningless. Our concern, however,
turns out to be very premature. Returning to the original form of
the equations, we notice that n = 0 and n = 1 both correspond to a
linear first-order differential equation in the first place (for n = 0 this
is direct, and for n = 1 we just have to move the term on the right to
the left-hand side).

• It is worth noting that this holds for all values of n other than n = 0
and n = 1. That is to say, we can consider fractional powers (e.g.
n = 1/2, n = 7/5, n = 92/13, etc.) and negative powers (n = −3,
n = −4/9, n = −103, etc.).

5 Exact Differential Equations

We saw that the trick for first-order differential equations was to recognize
the general property that the product rule from differentiation yields, as if
by design, a form that looks like a first-order linear equation. That is to say,
we have

d

dx
[f(x)y] = f(x)

dy

dx
+ f ′(x)y.

This certainly looks like a first-order linear differential equation—all we have
to do is set this equation equal to something (potentially a function of x)
and we are good to go. When we investigated these problems from the
other direction, trying to reverse the product rule, we recognized that we
were always able to do so after (potentially) multiplying by an appropriate
integration factor.

We might realize that there is another differentiation operator which
produces a very similar form. If we consider a general function F (x, y),
recognizing the dependence of y of x, we have from the chain rule that

d

dx
[F (x, y)] =

∂F

∂x
+
∂F

∂y

dy

dx
.

This certainly looks like a first-order differential equation. The difference is
that Fx and Fy are allowed to be functions of both x and y. Worse still, they
are allowed to be nonlinear functions of y. At any rate, this forms a general
class of differential equations known as exact differential equations. They
have the general form

M(x, y) +N(x, y)
dy

dx
= 0 (1)
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where M(x, y) = Fx(x, y) and N(x, y) = Fy(x, y) for some function F (x, y).
They are also commonly written

M(x, y)dx+N(x, y)dy = 0.

There are a few notes worth making:

• Exact differential equations are not generally linear. In other words,
this is a method for solving first-order nonlinear differential equations.

• The general solution for an exact equation is the implicit form F (x, y) =
C.

• Although this is a distinct class of differential equations, it will share
many similarities with first-order linear differential equations. Impor-
tantly, we will discover that there is often (although not always!) an
integration factor required to make a differential equation in the “ex-
act” form. This integration factor will take a different form than that
of first-order linear equations.

The question then becomes, if we have a general differential equation of
the form (1), how do we know if it is exact? The answer comes to us from
recognizing the equality of mixed-order partial derivatives. For a general
twice differentiable function F (x, y), we have

∂2

∂y∂x
F (x, y) =

∂2

∂x∂y
F (x, y)

=⇒ ∂

∂y
Fx(x, y) =

∂

∂x
Fy(x, y)

=⇒ ∂M

∂y
=
∂N

∂x
.

It can be shown that this is a necessary and sufficient condition for exact-
ness. This is an easy check, but it will not tell us how to find the general
solution. For that, we consider an example.

Example 1: Show that the following differential equation is exact and
use this observation to find the general solution:

(4xy1/2)dx+

(
x2

y1/2
+ 2

)
dy = 0.
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We have M(x, y) = 4xy1/2 and N(x, y) =
x2

y1/2
+ 2. The required condi-

tion for exactness is easy to check:

∂M

∂y
=

2x

y1/2
=
∂N

∂x
.

It follows that the equation is exact and, consequently, that there is a solu-
tion of the form F (x, y) = C. It remains to find the solution. How might
we accomplish this?

The key is to notice that the differential equations give rise to the system
of equations

∂F

∂x
= M(x, y) = 4xy1/2

∂F

∂y
= N(x, y) =

x2

y1/2
+ 2.

This can be solved by integrating either expression by the respective variable
of the partial derivative. The first expression gives

F (x, y) = 2x2y1/2 + g(y)

where we have to include an arbitrary function of y (i.e. the g(y)) because
partial differentiation with respect to x would eliminate such a term. We
now solve for g(y) by taking the derivative of F with respect to the other
variable, y. We have

∂F

∂y
=

x2

y1/2
+ g′(y).

We can see by comparing this equation with the previous system that we
need to have g′(y) = 2. It follows that g(y) = 2y + C so that the general
solution is

2x2y1/2 + 2y = C.

It is worth making a few notes on this process:

• It is important to remember that integrating a partial derivative re-
quires us to add an additional term of the other variable.

• It is a general property that the solution will only be represented in
implicit form. In other words, do not worry too much about solving
for y in the final steps.
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Now consider being asked to solve the differential equation

(4xy)dx+ (x2 + 2y1/2)dy = 0.

We notice immediately that this is just the previous example multiplied
through by y1/2. We suspect that this equation has the same solutions, and
the same methods will apply, but we can see that

∂M

∂y
= 4x 6= 2x =

∂N

∂x
.

In other words, the equation is no longer exact! This is a problem. We only
know how to solve equations of this form if they are exact. We seem to be
stuck.

The resolution comes by recognizing where the difference between the
two equations came. We can change this expression into an exact form by
dividing through by y1/2 (or multiplying through by y−1/2, if you prefer).
It should be clear then that—just as with first-order linear equations—
sometimes we will need to multiply through by some factor (also called
an integrating factor!) in order to get the equation in the form we can
use.

We might wonder if all equations of the form (1) can be made exact by
multiplication by an integration factor. This was what happened for first-
order linear differential equations, so it is not an unfair question. The answer
in this case, however, is unfortunately a pronounced NO. There are many
differential equations of the form (1) which cannot be manipulated so that
they are exact. The question then becomes, which differential equations can
be? Are there are conditions which guarantee a differential equation of the
form (1) can be made exact by multiplication by an appropriate integration
factor? And, if so, what is that integration factor?

The answer to these last questions is fortunately a YES. We have the
following conditions and associated integration factors:

Proposition 5.1. Consider a general differential equation of the form (1).
Then:

1. If R(x) =

(
∂M

∂y
− ∂N

∂x

)
/N is a function of x alone, then the integra-

tion factor
µ(x) = e

∫
R(x) dx

will make (1) exact.

12



2. If R(y) =

(
∂N

∂x
− ∂M

∂y

)
/M is a function of y alone, then the inte-

gration factor
µ(y) = e

∫
R(y) dy

will make (1) exact.

We will not justify these forms (although it is a good exercise!). Let’s
consider how they work for our specific example.

We need to check one or the other of the above conditions. We have

∂M

∂y
= 4x and

∂N

∂x
= 2x.

To check whether the first condition is satisfied, we compute(
My −Nx

N

)
=

(
4x− 2x

x2 + 2y1/2

)
=

(
2x

x2 + 2y1/2

)
.

Since this is not a function of x alone, the first condition fails and we are
not allowed to construct an integration factor out depending on x.

Now consider the second condition. We have(
Nx −My

M

)
=

(
2x− 4x

4xy

)
= − 2x

4xy
= − 1

2y
.

Since this is a function of y alone, we are allow to construct an integration
factor out of it. Setting R(y) = −1/(2y), we have

µ(y) = e
∫
R(y) dy = e

−
∫

1
2y

dy
= e−

1
2
ln(y) = y−1/2.

This is exactly integration factor we expected! Multiplying through the
expression by µ(x) = y−1/2 gives

(4xy1/2)dx+

(
x2

y1/2
+ 2

)
dy = 0.

This is the earlier expression, which we have already shown in exact, and
for which we already know the solution! The only trick was determining an
appropriate integration factor. It took a little more work than in the case
of linear first-order differential equations, but nevertheless we were able to
accomplish the task.

There are a few notes worth making:

• We may (once again) exclude constants and absolute values in the
integration required to determine the form of the integration factor.
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• It will be very important to keep the conditions on the variables x and
y straight (though practice!). The key terms are My and Nx, so that
the coefficient of dx has a y derivative taken, and the coefficient of dy
has an x derivative taken. If the wrong derivatives are evaluated, the
methods will not work.

Example: Determine the solution of

y cos(x)dx+ (1− y2) sin(x)dy = 0.

Solution: We might notice that this equation is separable, but ignoring
that for the time-being, we will treat as an exact (or nearly exact) equation.
To check for exactness, we compute

My = cos(x) 6= (1− y2) cos(x) = Nx.

So that differential equation is not exact. In order to check for an integration
factor, we compute(

My −Nx

N

)
=

(
cos(x)− (1− y2) cos(x)

(1− y2) sin(x)

)
=

(
y2 cos(x)

(1− y2) sin(x)

)
.

This is clearly not a function of x alone, so we may remove it from consid-
eration. The other condition gives(

Nx −My

M

)
=

(
(1− y2) cos(x)− cos(x)

y cos(x)

)(
−y2 cos(x)

y cos(x)

)
= −y.

Since this is a function of y alone, we set R(y) = −y and evaluate the
integration factor

µ(y) = e
∫
R(y) dy = e−

∫
y dy = e−

y2

2 .

We now multiply the expression through by this term. We have

ye−
y2

2 cos(x)dx+ (1− y2)e−
y2

2 sin(x)dy = 0.

This gives the system of necessary equations

∂F

∂x
= M(x, y) = ye−

y2

2 cos(x)

∂F

∂y
= N(x, y) = (1− y2)e−

y2

2 sin(x).
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The obvious choice (I hope!) is to integrate the first expression with respect
to x. We have

F (x, y) =

∫
∂F

∂x
dx = ye−

y2

2 sin(x) + g(y).

Taking the derivative of this with respect to y yields

∂F

∂y
= e−

y2

2 sin(x)− y2e−
y2

2 sin(x) + g′(y) = (1− y2)e
y2

2 sin(x) + g′(y).

Comparing this with the second equation gives g′(y) = 0 so that g(y) = C.
This gives the general (implicit) solution

F (x, y) = ye−
y2

2 sin(x) = C.
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