MATH 319, WEEK 4:
Applications and Numerical Methods

1 Applications - In-Flow / Out-Flow Models

One popular application of differential equations (and in particular, first-
order linear differential equations) is in modeling the amount (or concentra-
tion) of a substance in a well-stirred tank/vessel subject to constant in-flow
and out-flow. Common simple applications are:

e an industrial mixing tank with an entry pipe (pumping the chemical
of interest in) and an exit pipe;

e a lake with a inflow (say, a river) feeding a pollutant from upstream
and an outflow (also, a river) flowing downstream;

e a tub or sink with a steady inflow (say, a faucet) and a steady outflow
(say, a drain).

In all cases, the basic question is the same: If we know the in-flow, and the
out-flow, can we determine what actually happens inside the tank/lake/tub/etc.?
To answer this question, we must translate this description from words

into math. At the most basic level, we believe that

[rate of change] = [rate in] — [rate out].

That is to say, at each instance in time, we believe that the rate of change
of the overall amount of the quantity of interest to equal the amount that is
flowing in minus the amount that is flowing out. The question of character-
izing the dynamics is therefore only a matter of characterizing the in-flow
and the out-flow! Our knowledge of differential equations should handle the
rest.

To characterize the in-flow rate, we need a few pieces of information.
Firstly, we are likely to be given the overall mixture flow rate in, as well as
the concentration of the quantity of interest within that in-flowing mixture.
For example, we might know the amount of water which flows into a lake
every day, or every week, and we might know the concentration of a partic-
ular pollutant within that volume of water. The rate of the amount of the



pollutant flowing in is therefore

[rate in] = [volume in] x [concentration]
since
olume amount amount
[volume in| X [concentration in] = e X = -
time volume time

The out-flow is slightly different. Since we are assuming (for simplicity!)
that the tank/lake/tub is well-mixed, we may assume that the concentration
of the quantity of interest is the same everywhere in the tank/lake/tub.
In particular, wherever the outflow is located, and however quickly it is
removing mixture from the tank/lake/tube, we have

[amount)

[rate out] = [concentration] x [volume out] = X [volume out]

[volume]
since

[amount)]

amount volume amount
X [volume out] = X =|—

[volume] volume time time

The key difference here is that the amount in the above derivation is the
current amount of the quantity of interest. In other words, it is the un-
known function/variable we are trying to model! Another wrinkle is that
the volume is the current volume of the tank. If the volume of the in-flow
and the volume of the out-flow do not balance, the volume of the tank may
not be fixed and may in fact be a function of time (imagine filling a bathtub,
or emptying a mixing tank).

Example 1: Suppose that there is a factory built upstream of Lake
Mendota (volume 0.5 km?) which introduces a new pollutant to a stream
which pumps 1 km? of water into the lake every year. Suppose that the net
outflow from the lake is also 1 km? per year and that the concentration of
the pollutant in the inflow stream is 200 kg/km3. Set up an initial value
problem for the amount of pollutant in the lake and solve it. Assuming
there is initially no pollutant in the lake, how much pollutant is there are
one month? What is the limiting pollutant level?

Solution: We need to set up the model in the form [rate of change]=[rate
in]—[rate out]. If we let A denote the amount of the pollutant (in kg), we

have JA
te of ch = —.
[rate of change] o



In order to determine the rate in, we notice that the amount (in kg) coming
from the inflow can be given by

[rate in] = [volume rate in| X [concentration in]

= (1 km? /year) (200 kg/km®) = 200 kg/year.
The rate out is given by

[rate out] = [volume rate out] x [concentration out]
A
= (1 km? /year) <05 kg/km3> = 2A kg/year.

We can see the units have worked as desired. We can drop them and just
focus on the initial value problem

dA

— =200 —2A4, A(0) = Ap.

dt

This is a first-order linear differential equation which in standard form
is given by

dA
— +2A = 200.
dt +

We can see that we have p(z) = 2 and g(x) = 200. The necessary integration
factor is

p(t) = el 2dt _ 2t

so that we have

dA
thE +2e% A = 20062

2t 41 _ 10062t
— [e**A] = 100e

— A =100e% +C
—  A(t) =100+ Ce 2,

In order to solve for C, we use A(0) = Ap to get
A(0) =A4y=100+C = C = Ap— 100.
This gives the solution

A(t) = 100 + (Ag — 100)e 2.



For this form, we can easily answer the stated questions. Given an initial
pollutant level of zero (i.e. Ag = 0), we have

A(t) = 100 — 100e 2,

After one month has passed, we have t = 1/12 so that the amount of pollu-
tant is given by

A(1/12) = 100 — 100e~2(/12) &~ 15.3528 kg.
We can also easily determine the limiting pollutant level by evaluating

lim A(t) = lim [100 + (Ap — 100)e~ %] = 100.

t—o00

In other words, no matter what the initial amount is in the lake, we will
always converge toward 100 kg of pollutant distributed throughout the lake.
(This should make some sense. We imagine that the limiting level is going
to be when the rate in and the rate out are balanced. That occurs for this
model when 200 = 2A which implies A = 100.)

Example 2: Consider a 50 gallon tank which is initial filled with 20
gallons of brine (salt/water mixture) with a concentration of 1/4 lbs/gallon
of salt. Suppose that there is an inflow tube which infuses 3 gallons of brine
into the tank per minute with a concentration of 1 lbs/gallon. Suppose that
there is an outflow tube which flows at a rate of 2 gallons per minute. Set
up and solve a differential equation for the amount of salt in the tank. How
much salt is in the tank when the tank is full?

Solution: This is slightly different than the previous example because
the volume of mixture in the tank changes because the inflow and outflow
volume rates are different. There is more mixture flowing into the tank than
flowing out. Nevertheless, we can incorporate this into our model by noting
that the volume of the tank at time ¢ can be given by

V(t) =20+ (3 —2)t =20 +t.

We can now complete the model as before. We have

dA A 2A
- = 1) — (2 =3—
dt (3)(1) ()20+t 3 20 +t’

Again, this is a first-order linear differential equation. We can solve it by
rewriting

dA 2

— —— | A=3

a " <20 + t>

4

A(0) = 20(1/4) = 5.



and determining the integrating factor

p(t) _ ef2/(20+t) dt _ 621n(20+2§) _ (20 + t)2.

This gives
2dA 2
(20 +1)* = +2(20 + )4 = 3(20 + )
— % [(20 +¢)2A] = 3(20 +¢)?

—  (204+1)2A=(20+1)+C

= A=+ + G

Using the initial condition A(0) =5, we have

C
A = = 2 _— = —
(0)=5=20+ - = C=-6000

so that the particular solution is

6000

A(t) = (20 +1t) — 20107

To answer the question of how much salt will be in the tank when the
tank is full, we notice that the tank will be full when V'(t) = 20 + ¢ = 50,
which implies ¢t = 30 (i.e. it will take thirty minutes). This gives

6000 6000

50— = 47.6.
(20 + 30)2 2500

A(30) = (20 + 30) —

It follows that there will be 47.6 lbs of salt in the tank when it is full.

2 Numerical Methods

We may feel pretty optimistic regarding our abilities to solve first-order
differential equations at this point, but we have generally been operating so
far under the assumptions that (a) solutions exist; and (b) if they exist, we
can find them.

d
Now re-consider our earlier example Y2 + 2. Our toolbox of differ-

x
ential equation solving methods is pretty small so far, but it is growing. As
we go through the tools we have accumulated so far for this example, how-
ever, we quickly find ourselves frustrated. This differential equation is not



directly integrable, it is not separable or first-order linear, it is not (power)
homogeneous or Bernoulli, and there is not integrating factor to make it
exact. Nothing we have learned so far will help us.

We should not be surprised to learn that there are first-order differen-
tial equations which cannot be solved by the elementary methods we have
developed so far. In fact, most differential equations used in the applied
sciences do not have solutions which can be represented in terms of ele-
mentary functions (e.g. x", sin(z), cos(z), e, In(x), etc.). The differential
equation considered above, for instance, only has solutions which can be
represented in terms of Bessel functions (i.e. this class of functions can only
be represented as an infinite series of (potentially non-integer) powers of x!).

Our interest in differential equations does not stop when we fail to be
able to solve them, however. Our existence theorem guarantees that solu-
tions exist through every point (z,y) where f(z,y) is continuous, which is
everywhere for this differential equation. In other words, we know a solution
exists! We need to find a way to characterize this solution given that we
cannot analytically solve the differential equation.

This seems like an insurmountable task at first glance, but reconsider
the slope field diagram idea from a few weeks ago. Our intuition then was
that the value of f(z,y) at (z,y) corresponded to the slope of the particular
solution y(z) through the point (z,y) at the point (x,y). If we graphed a
representative sample of slopes (drawn as short lines) in the (z,y)-plane,
we could get a good sense of what solutions must look like. We were able
to correspond the analytic solutions for several examples to their slope field
diagrams.

We notice at this point that, even though we cannot (easily) find the so-

d
lution y(z) of d—y = 2% + ¢, it is still relatively easy to construct a direction
T

field diagram. We could create a table of values for f(x,y), or just notice
that f(x,y) > 0 and the steepness of the slope lines grows as we travel along
circles radiating out from (0,0). (That is to say, we have a curve of points
with the same slope along the circles 22 + 32 = C.) If we are careful, we
eventually arrive at the direction field picture given in Figure 1(a).

Even though we do not have access to an analytic solution for this dif-
ferential equation, we can get some sense of what any solution must look
like. All we have to do (essentially) is connect the lines! It does not take
long to come up with a picture that looks something like Figure 1(b).

This process is good for visualization, but it is not rigorous. For instance,
consider asking a question like: given the initial value y(0) = 0, what is the
value of the solution through this point at z = 17 We would certainly look
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Figure 1: (a) Slope field diagram of d—y =22 4+ 2. (b) Slope field diagram
x

with solutions.

at our slope field diagram, find the solution through (0,0) and guess where
that curve is going to be when x = 1, but we would like to do better.

To consider how we might approach this problem, let’s consider the slope
field diagram in more depth. We have the following intuition:

1. The slope at a point (z,y) agrees locally with the trajectory through
the point.

2. A trajectory agrees with the slopes of the arrows at every point it
passes through.

This leads us to the following intuition: If we start at a given point
(x0,Y0), locally the solution through that point agrees with the solution
along the line given by the slope of the arrow. Imagine moving straight
along the line at slope f(xo,y0) by a small increment in Az. This gives us
a new point (z1,y1). At this point, the value of f(x,y) has changed, but
so long as the initial increment was small we imagine it has not changed
much. So let’s continue this process! If we take small increments in z (say
0 < Az < 1) we imagine each step forward in the state space is not far away
from the analytic trajectory corresponding to the same initial condition (see
Figure 2).

This method is called the forward Euler’s method and is given explicitly
by the formula

Yn+l = Yn + f(xn,yn)Ax. (1)
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Figure 2: The forward Euler method traces out a solution by jumping for-
ward in increments of Ax along arrows of the slope field diagram.

This formula corresponds exactly to the intuition was offered above. At
a point (x,,y,), we compute the next state (r,41,yn+1) by updating the
current point by the slope of the vector field at that point (f(zy,yn)) over
a small increment (Az). We then repeat the process. This is a form of
numerical approximation.

For our example, we have the update scheme y,,11 = yn+ f(n, yn) Az =
Yn + (22 +y2)Az and 2,11 = 2, + Az. Choosing Az = 0.1 and (x9,y0) =
(0,0), we have

y1 = yo + (2§ + y5) Az = (0) + ((0)* + (0)*)(0.1) = 0.

We also have that 1 = xg+Ax = (0)+(0.1) = 0.1 so that (z1,y1) = (0.1,0).
Applying the procedure again, we have

Y2 = y1 + (23 + 92) Az = (0) + ((0.1)% + (0)%)(0.1) = 0.001.

It follows that (z2,y2) = (0.2,0.001). Continuing this procedure, we arrive
at the following table of values given in Table 1.

These values represent a numerical solution. They are the analogue of
plugging specific x values into our solution form y(z). Of course, for this
example, we do not have a solution form y(z) so this is as good as we can
do.



Tn Yn
0 0
0.1 0
0.2 0.001

0.3 | 0.0050001

0.4 | 0.0140026

0.5 | 0.030022207
0.6 | 0.05511234
0.7 | 0.091416077
0.8 | 0.141251767
0.9 | 0.207246973
1.0 | 0.292542104

5 © 0o otk wn = o3

Table 1: Table of values for the numerical solution of dy/dr = 2% + y>
starting at (0,0) using Euler’s method and the step size Az = 0.1.

There are several very important notes worth making about this proce-
dure:

1. Beyond a few iterations, this is not a process we want to do by hand.
Computers are a necessity, and they are very good (and getting better
and better!) at efficiently computing numerical solutions. As com-
puters have become more wide-spread (last fifty years), the emphasis
in applied mathematics has shifted significantly toward numerical inte-
gration, to the point where it is currently probably the most significant
approach taken in the field.

2. Numerical integration has two significant drawbacks when it comes to
model analysis: (1) It requires a specified initial condition, and (2)
it requires specified parameter values. In other words, it can suggest
whether a model permits certain behavior (e.g. growth/decay/stability,
oscillations, etc.) but can only do so for one particular solution at a
time. Analytic solutions, if they can be found, are more insightful
because they can consider all of this information at the same time.

3. Each step in the process has a error associated to it, so how do we
know the numerical solution approximates the actual solution after
hundreds or thousands of iterations? Even if each step has a small
error, how do we guarantee the cumulation of these errors is small?
We will not investigate these concerns in too much detail, but we will
make the following notes about ways to increase accuracy:



(a) Choose a smaller time step Az.

(b) Choose a better numerical scheme (forward Euler is excellent for
an accessible introduction to the topic, but terrible for bounding
the accumulation of errors).

which justifies the form (3).

In order to consider how the forward Euler method performs, consider
the following.

Example: With the help of a computer, use the Forward Euler method
with step sizes Az = 0.5,0.1,0.01, and 0.001 to estimate the value of y(1.5)
for the differential equation

dy

2 2
=2 + 0) = 0. 2
o =Tty y(0) (2)

Comment on how these results compare to the “true” value of y(1.5) =
1.517447537.

Solution: To re-iterate, the formula for the Forward Euler method is
Forward Euler: Yn+1 = Yn + f(Tn, yn)Ax. (3)

Notice first of all that, when we specify a particular point in the future
we are interested in, we can determine the number of steps required to get
there. For instance, we will need ( finai — Tinitiar)/Ax = 1.5/0.001 = 1500
computations to produce the estimate for y(1.5) using Az = 0.001—so we
have our work cut out for us! To do this by hand is infeasible; fortunately,
computers can implement such recursive algorithms as Euler’s method (and
other numerical schemes) very, very quickly.

We can carry out the procedure outlined in the lecture notes by hand to
get the first few estimates with our calculators, but for small step-sizes we
will definitely have to use a computer. The output from this gives the result
contained in the table above.

Az ‘ y(1.5) ‘ error steps

0.5 0.6328125 0.884635 3

0.1 | 0.9307268557 | 0.5867207 | 15
0.01 | 1.479113716 | 0.0383338 | 150
0.001 | 1.513502037 | 0.0039455 | 1500
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We can see that there is a marked improvement by reducing the step size.
This makes sense—we have less chance of floating far away from the true
trajectory if we take smaller steps before correcting ourselves. We should,
however, we disappointed in the tremendous number of steps associated with
the refine estimate. Fifteen-hundred steps represents a significant compu-
tational expenditure for a few decimal places of accuracy, and it would be
reasonable at this point to wonder if there are alternative schemes by which
to construct numerical solutions.

2.1 Runge-Kutta Method

The Runge-Kutta method is a popular choice and is known to produce
less error per step than the forward Euler, but at the cost of being more
computationally intensive during each step. The formulas are given by the
following:

A
Yntl = Yn + ?x (k1 + 2ko + 2k3 + kq)

where
k1= f(wn,yn)
1 1 (4)
Runge-Kutta: ko = f(xp + iAa; Yn + §k1Ax)

1 1
ks = f(:cn + iAl’,yn + iszx)
ky = f(zn + Az, y, + ksAzx).

These equations look crazy at first glance! But before we throw our
hands up in defeat, let’s see how it performs for the previous example taking
Az = 0.5,0.1 and 0.01.

The computations are easy enough to perform for Az that we will do one
step by hand. Thereafter, we will have to rely on a computer—or dedicate a
significantly greater amount of time to this course than any of us currently
have. As always, we have 21 = 29 + Az = (0) 4+ (0.5) = 0.5. To compute
y1, we need ki, ko, k3, and k4. We have

ki = f(zo,y0)Az = xf + y5 = (0)> + (0)* =0

11



and
1 1
ko = f(xo + §A$7 Yo + iklAiﬁ)
1 1
= (zo + §A$)2 + (y1 + §/€1A$)2

= ((0) + 5(05) + ((0) + 5(0)(0.5)” = 0.0625

and
1 1
ks = f(xo + iA%Z/O + §k2A=T)
1 1
= (2o + §A90)2 + (yo + §k2A$)2
1 1
= ((0) + 5(0.5))2 + ((0) + 5(0.0625)(0.5))2
— 0.06274414
and

ky = f(wo + Az, yo + k3Ax)
= (w0 + Ax)* + (yo + k3Ax)?
= ((0) + (0.5))% + ((0) + (0.06274414)(0.5))?
= 0.250984206.

That was a lot of work, and we haven’t even computed the estimate y; yet!
We finally have

A
y12y0+%(k1+2k2+2k3+k4)

= (0) + % ((0) + 2(0.0625) + 2(0.06274414) + (0.250984206))

= 0.041789373.

At this point, we are probably about to throw our hands up and swear
off the Runge-Kutta method once and for all. This was a pile of work just to
do one time-step! Before we despair too much, however, we should recognize
that all the work have done is easily programmed into a computer, and that
is exactly what is done in application. Letting my laptop do the rest of the
work, in a fraction of a second we have the following estimates:

12



Ax ‘ y(1.5) ‘ error steps
0.5 | 1.521061677 | 0.00361414 3
0.1 | 1.517473413 | 0.000025876 | 15
0.01 | 1.517447548 | 0.000000011 | 150

The reason we have gone through all of this trouble—or rather, let our
computers go through all this trouble—should now be clear. The Runge-
Kutta method gives a significantly better estimate of the true value per step.
No matter how ridiculous we find the amount of computation necessary in
each step to be, we cannot escape the overall efficiency. We have obtained a
better estimate of y(1.5) in three steps of the Runge-Kutta method (error=
0.00361414) than we obtained in 1500 iterations of the forward Euler method
(error= 0.0039455). It should come as no surprise, therefore, to learn that
the forward Euler method—while illustrative and intuitive—is never, ever,
ever use in practice. Even though each step is easy to compute, the overall
burden of cumulative errors makes it tremendously inefficient.
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