
MATH 319, WEEK 5 & 6:
Second-Order Differential Equations

1 Second-Order Differential Equations

So far, we have only dealt with first-order differential equations. That is to
say, we have only dealt with equations of the form

dy

dx
= f(x, y). (1)

We have developed a number of methods for solving this type of equations
and, also, methods for analyzing the solutions when they cannot be found
explicitly. We have seen a number of examples where equations of this form
arise: population growth models, stirred-tank models, velocity/acceleration
problems, etc. All in all, we should also feel pretty confident about our
mastery of first-order differential equations.

It should come as no surprise, however, that the mathematical models of
many physical phenomena cannot be represented by equations of the form
(1). The simplest possible extension we can make it to consider second-order
differential equations, i.e. equations of the form

d2y

dx2
= f

(
x, y,

dy

dx

)
. (2)

At first glance, equations (1) and (2) do not seem profoundly different, and
so we might suspect that the methods we have learned for (1) will apply
here. After all, the derivatives are still with respect to a single variable,
and we can certainly verify solutions for (2) as easily as for (1)—we just
plug them in! That is, however, right around where the similarities end. In
fact, none of the methods we learned for first-order differential equations
will work for second-order (or higher) ones. We will not be able to construct
direction fields, separate variables, or use simple substitutions (except in
very special cases!).

Before investigating the methods which will be applicable to solving
second-order differential equations, we first motivate how such equations
commonly arise in pratice.
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2 Motivation: Damped Spring / Pendulum

Consider the forces acting on a pendulum (or on an elongated spring). Sup-
pose the rest position is x = 0, anything to the right of that is x > 0, and
anything to the left is x < 0. If we move the pendulum to the right (x > 0),
gravity acts against the pendulum to force it left (F < 0); conversely, if we
move the pendulum to the left (x > 0), gravity acts against the pendulum
to force it right (F > 0). (See Figure 1.)

If we consider a frictional force in addition to this “restoring force”, we
have a similar interpretation except in terms of the velocity. If we imagine
v = 0 as no velocity, v > 0 as movement to the right, and v < 0 as movement
to the left, we have that friction always acts against the pendulum (i.e.
F < 0 if v > 0 and F > 0 if v < 0).
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Figure 1: Restoring forces acting on a simple pendulum or a mass-spring.
The force acts to restore the mass to its resting or neutral position.

Now let’s attempt to capture these forces more precisely. We will assume
the following:

1. Restoring force proportional to position: That is to say, we
will assume that Frestoring = −kx for some k > 0. This satisfies our
previous intuition (F < 0 for x > 0 and F > 0 for x < 0) although it
is an approximation which does not hold for high-amplitude oscillating
pendulums (i.e. pendulums that swing very far from the rest position).
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2. Frictional force proportional to velocity: That is to say, we will
assume that Ffriction = −cv = −cdxdt for some c > 0. This again
satisfies our previous intuition. It also makes sense that the more we
increase our velocity, the more “drag” we will experience.

The question then becomes how to incorporate this into a differential equa-
tion model. The answer comes from Newton’s second law F = ma (i.e. force
equals mass times acceleration). We have

ma = m
d2x

dt2

F = Frestoring + Ffriction = −kx− cdx
dt
.

Putting this all together gives us the combined differential equation

m
d2x

dt2
+ c

dx

dt
+ kx = 0. (3)

(Notice that we could derive the same differential equations, with a slightly
different interpretation for the constants involved, by considering a mass-
spring example obeying Hooke’s law.)

This differential equation may not look like much, but it will be our
canonical example (plus or minus a few modifications) for the next few
weeks. There are a few important things to notice about it:

• It is a second-order differential equation. Furthermore, it should not
take much convincing that the techniques we learned in the early por-
tion of this course (e.g. separating variables, finding integrating fac-
tors) are not going to work for finding a solution of such equations (or
higher-order equations).

• It is linear and has constant coefficients. In some senses, this is the
best possible case, and we will always been able to find solutions. A
little later on, we will deal with differential equations like this with a
forcing term on the right-hand side, i.e. equations like

m
d2x

dt2
+ c

dx

dt
+ kx = f(t).

Such equations are called non-homogeneous while equations of the
form (3) are called homogeneous. (Note the difference in meaning
between homogeneous first-order differential equations!) We will also
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consider linear second-order differential equations which do not have
constant coefficients, i.e. differential equations of the form

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0, and

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = g(x).

• There is a further subtlety regarding initial conditions of second-order
differential equations. Consider looking at a snapshot of a pendulum
extended to the right and asking the question of what happened to
the pendulum in the next moments after the snapshot was taken. We
should quickly realize that there are three cases:

1. If the pendulum was at rest, it will slowly pick up speed from rest
and move toward its resting position.

2. If the pendulum was swinging to the right, it will continue to the
right, lose speed, and eventually reverse (or swing over the top).

3. If the pendulum was returning from the right, it is already mov-
ing and will quickly return to the rest position (and probably
overshoot it).

In any case, we see that it is very important to consider not only the
position of the pendulum at the time the snapshot was taken, but also
the velocity. In general, for second-order differential equations, we will
always need two initial conditions.

(Note: This should also be intuitive in mathematical principle. To
resolve a second-order differential equations, if we were just able to
integrate, we would have to integrate twice and so end up with two
integration constants. We would correspondingly need two pieces of
information to solve uniquely for both constants.)

3 Second-Order Linear Differential Equations with
Constant Coefficients

Consider the general homogeneous second-order differential equation with
constant coefficients given by

a
d2y

dx2
+ b

dy

dx
+ cy = 0. (4)
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How might we go about finding a solution for such an equation? We
cannot separate the variables, or find an integrating factor, or find an obvious
substitution which will reduce the differential equation to first-order. So
what is there left to do?

The answer is perhaps unsatisfying—especially given how often we have
avoided doing this so far in the course—but we are actually going to guess.
At the very least we will take an educated guess. We know one function
which behaves particularly well under the operation of differentiation: the
exponential function erx. We also know that this is the solution to the
first-order linear homogeneous equation with constant coefficients, i.e. the
differential equation

dy

dx
= ry.

So we will guess that a solution of (4) has the form

y(x) = erx

for some r and see what happens. In the worst case scenario, even if this
does not work out, we have not lost a great deal of time. It is easy to take
derivatives of the exponential function!

Example: Find a solution of the following second-order differential
equation in the form y(x) = erx:

d2y

dx2
− 5

dy

dx
+ 4y = 0. (5)

Solution: We will guess that the solution has the form y(x) = erx. This
gives

y = erx,
dy

dx
= rerx,

d2y

dx2
= r2erx

so that

d2y

dx2
− 5

dy

dx
+ 4y = r2erx − 5rerx + 4erx

= erx(r2 − 5r + 4)

= erx(r − 1)(r − 4).

The only way for this to equal zero is to have r = 1 or r = 4. It follows that
either

y1(x) = ex, and y2(x) = e4x
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are solutions of the differential equation.

(Note: If we are unconvinced at this point, we could just check directly. We
have that y1(x) = ex gives

d2y

dx2
− 5

dy

dx
+ 4y = ex − 5ex + 4ex = 0

and y2(x) = e4x gives

d2y

dx2
− 5

dy

dx
+ 4y = (16e4x)− 5(4e4x) + 4e4x = 0.)

We should pause to make a few notes at this point:

• We have seen before that differential equations can have multiple an-
swers. Previously, however, we were able to resolve this by introducing
an initial condition. In this case, however, we have two completely dif-
ferent forms of solutions. It is easy to check that any functions of the
form

y1(x) = C1e
x and y2(x) = C2e

4x

are solutions. In fact, any function of the form

y(x) = C1y1(x) + C2y2(x) = C1e
x + C2e

4x

will be a solution, where C1, C2 ∈ R are arbitrary constants. This is
called the general solution of the differential equation.

• In order to find the particular solution—i.e. in order to solve for C1

and C2—we will need to introduce two initial conditions. For instance,
if we have the initial information y(0) = 1 and y′(0) = 0 we can
compute that

y′(x) = C1e
x + 4C2e

4x

so that

y(0) = 1 =⇒ C1e
(0) + C2e

4(0) = C1 + C2 = 1

y′(0) = 0 =⇒ C1e
(0) + 4C2e

4(0) = C1 + 4C2 = 0.

We can solve this system of two variables in two unknowns by any
method we happen to know. (Matrix algebra is helpful but not neces-
sary.) The second equation gives us

C1 = −4C2
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so that the first equation reduces to

C1 + C2 = (−4C2) + C2 = −3C2 = 1.

It follows that C2 = −1/3 and C1 = 4/3 so that relevant particular
solution is

y(x) =
4

3
ex − 1

3
e4x.

3.1 Properties of Solutions

We should probably step back at this point and consider some general prop-
erties of solutions of second-order differential equations. The first property,
which we have already hinted at, is that solutions may be combined to former
bigger solutions.

Theorem 3.1 (Principle of Superposition). Consider the general homoge-
neous second-order differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0.

Suppose that y1(x) and y2(x) are solutions of the equation. Then

y(x) = C1y1(x) + C2y2(x)

is a solution.

Proof. As with any formal mathematical proof, it may help to first write
out our given information and the objective—i.e. the thing we are trying
to prove—in mathematical terms. In this case, we want to use the fact that
y1(x) and y2(x) are solutions to show y(x) = C1y1(x)+C2y2(x) is a solution.
The given information is that y1(x) and y2(x) are solutions, which means
that

d2y1
dx2

+ p(x)
dy1
dx

+ q(t)y1 = 0 and
d2y2
dx2

+ p(x)
dy2
dx

+ q(t)y2 = 0. (6)

We will have to use this at some point. The objective is to show that
y(x) = C1y1(x) + C2y2(x) is a solution. Let’s check! On the left-hand side,
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we have

d2y

dx2
+ p(x)

dy

dx
+ q(t)y

=
d2

dx2
[C1y1(x) + C2y2(x)] + p(x)

d

dx
[C1y1(x) + C2y2(x)] + q(x) [C1y1(x) + C2y2(x)]

= C1
d2y1
dx2

+ C2
d2y2
dx2

+ C1p(x)
dy1
dx

+ C2p(x)
dy2
dx

+ C1q(x)y1 + C2q(x)y2

= C1

[
d2y1
dx2

+ p(x)
dy1
dx

+ q(t)y1

]
+ C2

[
d2y2
dx2

+ p(x)
dy2
dx

+ q(t)y2

]
.

It is easy to lose ourselves in this algebra and lose track of where we were
trying to get to. The important thing is that we have our given information
written out clearly. Referring back to (6), we immediately see that the left-
hand side simplifies to zero, since each bracketed term is exactly in the form
of the given information. Tracing back to the original equation, we have
that

d2y

dx2
+ p(x)

dy

dx
+ q(t)y = 0.

But this is exactly what it means for y(x) to be a solution of the differential
equation! In other words, we accomplished exactly what we set out to show.
We are done.

Let’s stop to make a few notes:

• The form y(x) = C1y1(x) + C2y2(x) is called a linear combination of
the solutions y1(x) and y2(x). The reason for the terminology should
be obvious to those with some background in linear algebra (think
linear combination of vectors!) but is not important enough for the
purposes of this course to dwell on here.

• In order to apply the principle of superposition, it was very important
that the equation be linear and that the right-hand side was zero, i.e.
it was a homogeneous equation. It is very easy to construct examples
where the principle fails for non-linear differential equations or differ-
ential equations with a non-trivial right-hand side. For example, the
nonlinear differential equation

y′(x)− y1/2 = 0

has the general solution

y(x) =
(x− C)2

4
.

8



It can be seen, however, that we may not take even a trivial linear
combination (i.e. just scaling!) for this function while maintaining the
property of being a solution. For instance, the function

y1(x) = 4y(x) = (x− C)2

fails to be a solution because y′(x) = 2(x− C) and y1/2 = x− C (for
x ≥ C). It is also necessary for the equation to be homogeneous. For
instance, the differential equation

y′(x)− y = ex

has the general solution

y(x) = (x+ C)ex.

It can be easily checked that y(x) = xex satisfies the differential equa-
tion; however, the function y1(x) = 2y(x) = 2xex does not.

The principle of superposition allows us to build solutions. It says that,
given any two solutions, we can make another solution by adding them
together. It is also clear that this can be extended to as many solution as
we like—that is to say, we could bring three solutions together, or four, or
five, and build bigger and bigger solutions. While this tells us something
very important about solutions, it also raises a few very important questions:

1. Is there a fundamental set of building blocks with which we can build
every solution of the differential equation?

2. How many are there?

3. How do we tell them apart?

These are very important questions! We know that y(x) = C1e
x+C2e

4x

is a solution of our example differential equation, but are ex and e4x the
only possible choices? Could there be a third function that we just have not
found? How do we know we have found everything from which a solution
could be built?

To answer this question, we introduce the following very important term,
known as the Wronskian.

Definition 3.1. The Wronskian of two functions y1(x) and y2(x) is the
term

W (y1, y2, x) = y1(x)y′2(x)− y′1(x)y2(x).
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Note: For those of you who have taken some linear algebra, the Wron-
skian may be more recognizable in the determinant form

W (y1, y2, x) =

∣∣∣∣ y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣ .
This form generalizes easily to higher dimensions, but that will not factor
significantly in this course.

Although it is not obvious, the Wronskian plays a significant role in
whether an initial value problem for a second-order differential equation is
well-posed. We have the following result.

Theorem 3.2 (Theorem 3.2.4 in text). Suppose y1(x) and y2(x) are solu-
tions of the second-order homogeneous differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0.

Then every solution of the differential equation can be expressed in the form

y(x) = C1y1(x) + C2y2(x)

for some C1, C2 ∈ R if and only if the Wronskian W (y1, y2, x) is non-zero
for some value of x.

It may be hard at first glance to understand exactly what this is saying,
and why it is important. Perhaps this is best fielded by continuing our ex-
ample. We previously found that y1(x) = ex and y2(x) = e4x were solutions
of the given differential equation. We were then able to convince ourselves
(through either inspection, or Theorem 3.1) that any function of the form
y(x) = C1e

x +C2e
4x was also a solution. We could not, however, be certain

that every solution had this form. In order to do that, we need to check the
Wronskian. We have that

y′1(x) = ex and y′2(x) = 4e4x

so that

W (y1, y2, x) = y1(x)y′2(x)− y′1(x)y2(x)

= (ex)(4e4x)− (ex)(e4x)

= 3e5x.

Since this is non-zero everywhere, we can finally say that the solution form
y(x) = C1e

x + C2e
4x is complete. That is to say, we are guarantee that we
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have not missed any solutions! Every solution can indeed to written as a
linear combination of ex and e4x.

Note: It is natural to ask which kinds of solutions y1(x) and y2(x) do not
satisfy the Wronskian condition in Theorem 3.2. That is to say, if we have
two solutions, how likely is it that we cannot construct the whole solution
class out of them? The answer is a very definitive not often—in fact, they
have to be multiples of one another, i.e. y2(x) = Cy1(x) for some C. That
means that almost all pairs of elementary functions (e.g. ex, e−2x, ln(x),
x2, sin(x), etc.) have a non-zero Wronskian. We will nevertheless see that
the Wronskian can be used in very powerful ways to construct solutions of
differential equations.

This tells us what the solution set looks like—a linear combination of
basic solutions—but it does not tell us how to find these basic solutions.
In fact, this can be very hard for general linear differential equations with
variable coefficients! There are many examples, even second-order examples,
where the solution may only be expressed as a power series approximation.
We will consider this later in the course. For now, we will return to con-
sideration of second-order linear homogeneous differential equations with
constant coefficients.

4 Solution Forms (Constant Coefficients)

Reconsider the differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = 0. (7)

In order to solve this equation, we guess the general form y(x) = erx. We
can see very quickly that this yields

ar2erx + brerx + erx = erx(ar2 + br + c) = 0.

Since erx > 0 for all x ∈ R, it follows that we must have ar2 + br+ c = 0 in
order to have a solution. It follows by the quadratic formula that we have

r1, r2 =
−b±

√
b2 − 4ac

2a
. (8)

We observe that there are three possible cases:
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1. If b2 − 4ac > 0 we will have two distinct real values r1 and r2.

2. If b2 − 4ac = 0 we will have one repeated real value r.

3. If b2 − 4ac < 0 we will have a complex conjugate pair r = α ± βi,
where α = Re(r) and β = Im(r).

We have already seen what happens for the first case. The second two
cases are the trickier cases. They are captured by the following result.

Theorem 4.1. Consider the second-order linear homogeneous differential
equation (7) with constant coefficients. Let r1 and r2 be defined by (8). Then
the general solution of (7) is:

1. If b2 − 4ac > 0 the general solution is y(x) = C1e
r1x + C2e

r2x.

2. If b2 − 4ac = 0 the general solution is y(x) = C1e
rx + C2xe

rx.

3. If b2 − 4ac < 0 the general solution is

y(x) = eαx(C1 cos(βx) + C2 sin(βx)).

Proof. We know that we only need to find two linearly independent solu-
tions. We have the following cases:

1. Case 1: If the guess y(x) = erx produces two distinct real values r1
and r2, we have that y1(x) = er1x and y2(x) = er2x essentially for free.
The only thing remaining is to show that the Wronskian is non-zero
when r1 6= r2 (Check!). Finally, by Theorem 3.2, we have

y(x) = C1e
r1x + C2e

r2x.

2. Case 2: If the guess y(x) = erx only produces the single solution
y1(x) = erx then we need to find another solution by another method.
Recall that the measure of solutions being different was that the Wron-
skian was non-zero. It should not take much convincing (check!) to
believe that the only way two solutions can have a zero Wronskian
is if they are multiples of one another. For instance, if y1(x) = e2x

is a solution, and proposed y2(x) = 5e2x as a second basic solution,
we would quickly find that W (y1, y2, x) = 0. That means these solu-
tions are not sufficient different to construct the general solution set
y(x) = C1y1(x) + C2y2(x) out of them. We cannot have solutions of
the form y2(x) = Cy1(x)!
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What we require, therefore, is that there is another another function
u(x) (which is not a constant!) so that

y2(x) = u(x)y1(x). (9)

This quantifies the fact that y2(x) and y1(x) must have more variance
between them than just constant multiplication. We want to determine
a non-trivial function u(x) for which y2(x) is a solution of (7) given
that y1(x) = erx is a solution.

We know that y1(x) = erx is a solution. This means that

ay′′1 + by′1 + cy1 = erx(ar2 + br + c) = 0 (10)

and, since b2 − 4ac = 0, we have that

r = −b/(2a) (alternatively 2ar + b = 0) (11)

It follows from (9) that

y2(x) = u(x)y1(x) = u(x)erx

y′2(x) = u′(x)erx + ru(x)erx

y′′2(x) = u′′(x)erx + 2ru′(x)erx + r2u(x)erx.

Substituting this into the left-hand side of the differential equation
gives

ay′′2(x) + by′2(x) + cy2(x)

= a(u′′(x)erx + 2ru′(x)erx + r2u(x)erx)

+ b(u′(x)erx + ru(x)erx) + cu(x)erx

= u(x)erx(ar2 + br + c) + u′(x)erx(2ar + b) + au′′(x)erx

Here is where we may final use our given information. The term cor-
responding to u(x) must be zero because y1(x) = erx is a solution
(10), while the term corresponding to u′(x) must be zero because r is
a repeated root (11). Since the right-hand side of the equation is zero,
we have that, in order for y2(x) to be a solution, it is enough to have
au′′(x)erx = 0. The only way this can happen is if

u′′(x) = 0 =⇒ u(x) = Ax+B.

It follows that the solution y2(x) is given by

y2(x) = u(x)y1(x) = (Ax+B)erx = Axerx +Berx.
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We now have

y(x) = C1y1(x) + C2y2(x) = C1e
rx + C2(Axe

rx +Berx)

= (C1 + C2B)erx + C2Axe
rx = C̃1e

rx + C̃2xe
rx.

Since it can be easily checked the the Wronskian of erx and xerx is
non-zero for all x ∈ R, we are done.

3. Case 3: If the guess y(x) = erx yields a complex conjugate pair, we
have that that r1,2 = α± βi where α = Re(r) and β = Im(r) so that

y1,2(x) = e(α±βi)x = eαxe±βix.

This, however, involves the imaginary number i =
√
−1, while we are

clearly only interested in real-valued solutions. It turns out that we can
use some arithmetic to get rid of the imaginary parts of the equation
and find two linearly independent real-valued solutions to (7).

It is a well-known fact of complex analysis that

eix = cos(x) + i sin(x).

This formula is known as Euler’s formula (not related to the Euler
method in numerical methods!). It is certainly not an obvious formula
by any means, but it can be verified by taking the Taylor series expan-
sions of the left- and right-hand sides of the equation. At any rate, it
now follows that we have the solutions

y1(x) = eαxeβix = eαx (cos(βx) + i sin(βx))

and
y2(x) = eαxe−βix = eαx (cos(βx)− i sin(βx))

We know that any linear combination of these functions produces a
solution of (7). In particular, if we can find a linear combination of
these solutions which are real-valued then we can forget about this
whole complex valued mess we have gotten ourselves into.

In fact, we can do just that! After trying for a little while, we might
notice that

ỹ1(x) =
1

2
y1(x) +

1

2
y2(x) = eαx cos(βx).

That is to say, by taking this linear combination, we can eliminate
all dependence on the complex value i. This is one solution, but we
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expect that there are actually two. So we must find another way to
eliminate the dependence on i.

The method of doing so is not obvious at all, but it is easy to verify
that taking the complex linear combination

ỹ2(x) = − i
2
y1(x) +

i

2
y2(x) = eαx sin(βx)

we obtain a second solution which has a non-trivial Wronskian on
x ∈ R (Check!). That’s all we need to do! The general solution is

y(x) = C1ỹ1(x) + C2ỹ2(x)

= C1e
αx cos(βx) + C2e

αx sin(βx).

Example 1: Find the general solution of 4y′′(x) + 12y′(x) + 9y(x) = 0.
Then find the particular solution for y(0) = 2 and y′(0) = 0.

Solution: We guess the solution form y(x) = erx. This gives

4y′′(x) + 12y′(x) + 9y(x) = erx(4r2 + 12r + 9) = erx(2r + 3)2 = 0.

It follows that we only have a solution if r = −3/2. Since this is a repeated
root, we are in Case 2 and the general solution is given by

y(x) = C1e
−(3/2)x + C2xe

−(3/2)x.

To solve for the particular solution, we compute

y′(x) = −3

2
C1e

−(3/2)x + C2e
−(3/2)x − 3

2
C2xe

−(3/2)x.

The conditions y(0) = 3 and y′(0) = 0 gives the system

C1 = 2

−3

2
C1 + C2 = 0.

We can quickly solve this to get C1 = 2 and C2 = 3. It follows that the
particular solution is

y(x) = 2e−(3/2)x + 3xe−(3/2)x.
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Example 2: Find the general solution of y′′(x) + 2y′(x) + 2y(x) = 0.
Then find the particular solution for y(0) = 1 and y′(0) = −1.

Solution: We guess the solution y(x) = erx. This gives

y′′(x) + 2y′(x) + 2y(x) = erx(r2 + 2r + 2) = 0.

The quadratic formula gives the solution

r =
−2±

√
4− 8

2
= −1± i.

Since this a complex root, we are in case 3 and the general solution is

y(x) = C1e
−x cos(x) + C2e

−x sin(x).

To solve for the particular solution, we compute

y′(x) = −C1e
−x cos(x)− C2e

−x sin(x)− C1e
−x sin(x) + C2e

−x cos(x)

= −C1e
−x(cos(x) + sin(x)) + C2e

−x(cos(x)− sin(x)).

The conditions y(0) = 1 and y(0) = −1 gives the system

C1 = 1

−C1 + C2 = −1.

It follows immediately that C1 = 1 and C2 = 0 so that the particular solution
is

y(x) = e−x cos(x).
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