
MATH 319, WEEK 7:
Non-Homogeneous Linear DEs

1 Nonhomogeneous Linear Differential Equations

Suppose we want to solve the second-order differential equation

d2y

dx2
+ 4y(x) = 12x. (1)

The only difference between this and the type of equations we have been
considering so far is the term 12x on the right-hand side. This extra term
is enough to make the equation non-homogeneous.

We might think at first glance that the technique used to solve homoge-
neous equations might work. That is to say, we guess that the solution has
the exponential form y(x) = erx. This gives

d2y

dx2
+ 4y(x) = erx

(
r2 + 4

)
= 12x.

It should not take much convincing that there is no value of r which satisfies
this equation for all x. The guess we used for homogeneous linear equations
will not work for non-homogeneous equations. So, what can we do?

The answer may be unsatisfying, but it should not be surprising. We
are just going to guess something else. This time, however, we are going to
have to guess a different solution form—in particular, we are going to have
to guess a function which, when substituted in the left-hand side, gives the
non-homogeneous term on the right-hand side. This is surprisingly easy to
do! We can see immediately that y(x) = 3x is a solution of the equation
since it satisfies 4y(x) = 12x and y′′(x) = 0. (Probably the only way we
would not have seen this would have been to overthink the problem!)

We will say that we have found a particular solution yp(x) = 3x since it
satisfies the differential equation. We might wonder, however, how to build
a general solution out of this observation. It is not as easy as multiplying
the found solution by a constant, since y(x) = Cx is clearly not a solution
for all C ∈ R. We must be a little more careful. After some thought, we
might realize that if we could find a solution to the homogeneous equation

d2y

dx2
+ 4y(x) = 0 (2)

1



then we could add that solution to the particular solution yp(x) = 3x and
still satisfy (1). The reason should be clear:

1. Plugging yp(x) in the left-hand side of (1), we obtain 12x.

2. Plugging the solution of (2) in the left-hand side of (1), we obtain 0.

3. Consequently, plugging both in at the same time produces 12x+(0) =
12x, so that it is still a solution of (1).

Since we know that yc(x) = C1 sin(2x) + C2 cos(2x) is the general solution
of (2), we may quickly reason that

y(x) = yc(x) + yp(x) = C1 sin(2x) + C2 cos(2x) + 3x

is the general solution of (1).
We have actually stumbled upon the general solution method for solving

second-order (and higher) linear differential equations.

Theorem 1.1 (Theorem 3.5.2 in text). Consider a second-order linear,
nonhomogeneous differential equation of the form

d2y

dx2
+ p(x)

dy

dx
+ q(x)y(x) = g(x). (3)

Then any solution of (3) can be written

y(x) = yc(x) + yp(x)

where yp(x) is any particular solution of (3) and the complementary func-
tion yc(x) = C1y1(x) + C2y2(x) is the general solution of the homogeneous
system

d2y

dx2
+ p(x)

dy

dx
+ q(x)y(x) = 0. (4)

Note: Since we already know how to solve homogeneous second-order
linear DEs with constant coefficients, this result tells us that we need only
worry about finding yp(x)! In general, however, it may be difficult to de-
termine the complementary solution yc(x) if the coefficients are allowed to
vary with time.
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2 Method of Undetermined Coefficients

The question then becomes how we find the particular solution yp(x). We
will see two methods in this class. The first will be an extension of what
we have seen before: we will just guess! The second method, called varia-
tion of parameters, will not require any guessing but will require a signif-
icantly greater amount of work (and some potentially tricky integration).
The method presented first, called the method of undetermined coefficients,
therefore is the preferred method whenever it can be applied.

We notice that the left-hand side of (3) involves just y and its derivatives.
What we need is a form of yp(x) which can be differentiated to give the form
of g(x) on the right-hand side. We notice that

d

dx
[polynomial] = polynomial

d

dx
[exponential] = exponential

d

dx
[sine and/or cosine] = sine and/or cosine.

This suggests that we guess trial functions yp(x) of the following forms:

yp(x) = Anx
n + An−1x

n−1 + · · ·+ A1x + A0

yp(x) = Bert

yp(x) = A cos(ax) + B sin(ax)

(5)

where the various coefficients An, A0, A,B, etc. are undetermined constants.
In order to solve for the constants in the trial function yp(x), we will need
to plug the function into (3).

To summarize, we have the following steps for a linear homogeneous
differential equations with constant coefficients (3):

1. Find the general solution yc(x) of the associated homogeneous equation
(4).

2. Select a trial function yp(x) of some combination of the forms (5)
(depending on f(x)).

3. Plug the trial function yp(x) into (3) and solve for the undetermined
coefficients.

4. Write the general solution as y(x) = yc(x) + yp(x).

3



Example 1: Find the general solution of the differential equation

d2y

dx2
+ 4y(x) = e−x − 3x3.

Solution: We need to first solve the homogeneous equation

d2y

dx2
+ 4y(x) = 0.

The guess yc(x) = erx gives erx(r2 + 4) = 0 so that r = ±2i. It follows that

yc(x) = C1 cos(2x) + C2 sin(2x).

We now need to use a trial function yp(x) with a suitable form that it
could give e−x − 3x3 after differentiation. We try

yp(x) = Ae−x + Bx3 + Cx2 + Dx + E

=⇒ y′p(x) = −Ae−x + 3Bx2 + 2Cx + D

=⇒ y′′p(x) = Ae−x + 6Bx + 2C.

It follows that the differential equation gives

y′′p(x) + 4yp(x)

= (Ae−x + 6Bx + 2C) + 4(Ae−x + Bx3 + Cx2 + Dx + E)

= 5Ae−x + 4Bx3 + 4Cx2 + (6B + 4D)x + (2C + 4E)

= e−x − 3x3.

It follows that we need to satisfy

5A = 1

4B = −3

4C = 0

6B + 4D = 0

2C + 4E = 0.

It follows that we have A = 1/5, B = −3/4, C = 0, D = 9/8, and E = 0.
The corresponding particular solution is

yp(x) =
1

5
e−x − 3

4
x3 +

9

8
x.
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The general solution is therefore

y(x) = yc(x) + yp(x) = C1 cos(2x) + C2 sin(2x) +
1

5
e−x − 3

4
x3 +

9

8
x.

Note: It is possible that we may need to use more complicated combi-
nations of these functions. For instance, if the forcing term is ex sin(x), we
will need to use yp(x) = Aex cos(x) + Bex sin(x). A term like x2e−x would
need (Ax2 + Bx + C)e−x, and so on.

Note: The arguments inside the trigonometric and exponential terms
are also important. If there are distinct constants, we will need to use
distinct trial functions. For instance, the forcing term f(x) = sin(2x) +
cos(3x) requires the trial function yp(x) = A cos(2x)+B sin(2x)+C cos(3x)+
D cos(3x).

3 Alternative Trial Forms

Now find the general solution of the differential equation

d2y

dx2
+ 4y(x) = cos(2x).

We already have the complementary function yc(x) = C1 cos(2x) +
C2 sin(2x). We need to guess the form of the trial function yp(x). We
need terms which can produce sin(2x) upon differentiation so we choose

yp(x) = A cos(2x) + B sin(2x).

This gives

y′p(x) = −2A sin(2x) + 2B cos(2x)

y′′p(x) = −4A cos(2x) + 4B sin(2x).

It follows that we have

y′′p(x) + 4yp(x)

= −4A cos(2x) + 4B sin(2x) + 4(A cos(2x) + B sin(2x)) = 0.

We need to match constants so that this equals f(x) = sin(2x) but the
term has vanished. We have nothing left to work with! Something has gone
terribly wrong, but what?
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We might notice that we should have expected this. After all, the com-
plementary function is yc(x) = C1 cos(2x) + C2 sin(2x), which meant we
know that the combination of functions in the trial function had to vanish
when it was substituted into the left-hand side of our differential equation.
This raises a very important concern which we will have to identify:

• The trial functions (5) will only work if the individual functions do not
appear in the complementary function yc(x).

In other words, if a forcing term coincides with a term already contained
in the dynamics of the unforced system, we will not be able to construct
nontrivial trial function in the same way as we have been.

It turns out that in this case we will have to use different trial functions.
What we really need to do is generate other independent solutions (in the
sense of having a non-trivial Wronskian). We have already done this! For
instance, we found that if we had a solution y1(x) = ex and needed another
linearly independent one, that we could use y2(x) = xex. If we need another
one, we went up to y3(x) = x2ex, and so on.

The same trick will work here! We will take our trial functions to be the
same as used in (5) but with as many powers of x are required to give new
functions. If the terms in the trial functions (5) appear in the complementary
function yc(x), we must instead use the trial functions

yp(x) = Anx
n+s + An−1x

n+s−1 + · · ·+ A1x
s+1 + A0x

s

yp(x) = Bxsert

yp(x) = Axs cos(ax) + Bxs sin(ax)

(6)

where s is the lowest power which produces a term which is independent of
those in the complementary solution.

Example 1: Reconsider the example

d2y

dx2
+ 4y(x) = cos(2x).

The complementary function was yc(x) = C1 cos(2x) + C2 sin(2x) so we
are not allowed to use yp(x) = A cos(2x) + B sin(2x) as a trial function.
Instead, we must use

yp(x) = Ax cos(2x) + Bx sin(2x).
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This gives

y′p(x) = A cos(2x) + B sin(2x)− 2Ax sin(2x) + 2Bx cos(2x)

y′′p(x) = 4B cos(2x)− 4A sin(2x)− 4Ax cos(2x)− 4Bx sin(2x).

Plugging into the DE gives

y′′p + 4yp

= 4B cos(2x)− 4A sin(2x)− 4Ax cos(2x)− 4Bx sin(2x)

+ 4(Ax cos(2x) + Bx sin(2x))

= 4B cos(2x)− 4A sin(2x)

= cos(2x).

It follows that we need A = 0 and B = 1/4 so that we have the particular
solution

yp(x) =
1

4
x sin(2x).

The general solution of the differential equation is therefore

y(x) = C1 cos(2x) + C2 sin(2x) +
1

4
x sin(2x).

While this seems like a simple fix, there are several subtleties which may
arise. For instance, consider the following.

Example 2: Find the general solution of the differential equation

d2y

dx2
+ 4

dy

dx
+ 4y(x) = xe−2x.

Solution: We know now that we always need to determine the comple-
mentary solution yc(x) before shifting our focus to the particular solution
yp(x). So we solve

d2y

dx2
+ 4

dy

dx
+ 4y(x) = 0

by substituting y(x) = erx and get

erx(r2 + 4r + 4) = erx(r + 2)2 = 0

It follows that we have a repeated root r = −2, corresponding to the general
solution

yc(x) = C1e
−2x + C2xe

−2x.
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We want to now find the particular solution yp(x). Our old guess, based
on the right-hand side being xe−2x, would be

y(1)p (x) = Axe−2x + Be−2x.

We recognize now, however, that the solution forms coincide with the fun-
damental solutions of the complementary solution yc(x) found above—e−2x

and xe−2x. These forms cannot be a part of any particular solution, because
we already know they evaluate to zero when substituted into the left-hand
side of the differential equation.

Our first attempt at resolving this problem is to multiply the trial func-
tion form by x. This gives us the second candidate function

y(2)p (x) = Ax2e−2x + Bxe−2x.

This is certainly better, but there is still a problem. The function x2e−2x is
not contained in the complementary solution, but the function xe−2x is. We
cannot gain any information from this function, and x2e−2x is not enough
to get the job done on its own. We saw that polynomial right-hand sides
needed one more degree of freedom (unsolved coefficients) than their highest
power. The same applies here. We need two constants to solve for, since
the highest power term on the right-hand side is x, but only have one with
the current trial function. This trial function will not succeed.

In fact, the correct trial function is obtained by multiplying by x2. This
gives

yp(x) = Ax3e−2x + Bx2e−2x.

Neither of the forms here are contained in the complementary function so
that we have two constants to solve for—exactly as many as demanded by
the non-homogeneous term xe−2x in the differential equation. We can now
plug this into the differential equation. First, we compute

y′p(x) = 2Bxe−2x + (3A− 2B)x2e−2x − 2Ax3e−2x

and

y′′p(x) = 2Be−2x + (6A− 8B)xe−2x + (−12A + 4B)x2e−2x + 4Ax3e−2x.

The differential equation gives us

y′′p(x) + 4y′p(x) + 4yp(x) = 2Be−2x + 6Axe−2x = xe−2x.
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It follows that B = 0 and A = 1/6 so that the particular solution is

yp(x) =
1

6
x3e−2x.

The general solution is therefore

y(x) = C1e
−2x + C2xe

−2x +
1

6
x3e−2x.

This was certainly different than what we might have expected, so we
should take a moment to clean up what we know so far.

1. If the functions in the naive trial function overlap with those in the
complementary solution, we need to multiply the trial function by x
(s = 1 in the earlier equation).

2. If the functions in the naive trial function overlap with those in the
complementary solution and a root is repeated in the complementary
function, we need to multiply the trial function by x2 (s = 2 in the
earlier equation).

For second-order equations, that is all that can happen, although this gen-
eralizes in the natural way to higher-order systems. Let’s consider another
subtlety which may arise to make sure we have not let anything slip between
the cracks.

Example 3: Find the general solution of

d2y

dx2
− dy

dx
− 2y(x) = xe−x.

Solution: We first find the complementary solution yc(x) by solving

d2y

dx2
− dy

dx
− 2y(x) = 0.

This gives
yc(x) = C1e

−x + C2e
2x.

We now shift to the particular solution. At first glance, we seem to fine—
the term xe−x does not appear as a fundamental solution of the complemen-
tary problem. We have to be careful, however. The naive trial function form
is

y(1)p (x) = Axe−x + Be−x

9



which does have terms which overlap with those in the complementary
solution—in particular, the term e−x. So, even though xe−x is not a prob-
lem term, the trial function which comes from it is incomplete. As before

we will not be able to find a new solution with it. We must multiply y
(1)
p (x)

by x to get
yp(x) = Ax2e−x + Bxe−x.

Since neither of the terms here are contained in the complementary solution,
we will be able to solve for the constants. We compute

y′p(x) = −Ax2e−x + (2A−B)xe−x + Be−x

and
y′′p(x) = Ax2e−x + (−4A + B)xe−x + (2A− 2B)e−x.

Plugging these into the differential equation gives

y′′p(x)− y′p(x)− 2yp(x) = −6Axe−x + (2A− 5B)e−x = xe−x.

It follows that we have the system −6A = 1 and 2A − 3B = 0 so that
A = −1/6 and B = −1/9. The particular solution is therefore

yp(x) = −1

6
x2e−x − 1

9
xe−x.

while the general solution is

y(x) = C1e
−x + C2e

−2x − 1

6
x2e−x − 1

9
xe−x.

4 Variation of Parameters

Now consider being asked to solve the differential equation

d2y

dx2
+ 4y(x) = sec(2x). (7)

While this is the same form as the examples we have dealt with before, there
is one important difference: We do not know a simple function which always
yields sec(2x) upon repeated differentiation. So which form of trial function
yp(x) should we use? (Guess!)

It should not take long to realize that this approach is not going to get
us far. It will turn out the particular solution is not a simple function of
our basis trigonometric functions; nevertheless, we would like to be able to
figure out what yp(x) is!
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The method we are going to employ is called variation of parameters.
The basic idea of this method is that we will try to construct the particular
solution by taking the complementary solution

yc(x) = C1 sin(2x) + C2 cos(2x)

and allowing some variance in the parameters C1 and C2. This is simi-
lar to the technique used to prove, for instance, that a repeated root r for
the homogeneous constant coefficient case also had a solution xerx. We as-
sumed then that there was another solution of the form y2(x) = u(x)y1(x) =
u(x)erx. In this case, we will need two functions, one corresponding to C1

and one corresponding to C2. We have

yp(x) = u1(x)y1(x) + u2(x)y2(x) = u1(x) sin(2x) + u2(x) cos(2x).

The idea is now the same! We want to plug this into the differential equation
(7) and see if we can figure out what u1(x) and u2(x) need to be.

Before we begin, however, we will need to make one crucial assumption.
We have two functions to solve for—u1(x) and u2(x)—but only one piece
of information, the differential equation itself. This is not enough—we need
another piece of information. But what other piece of information do we
have?

In fact, we do not have much more to work with, so we will just assume
the second piece of information. We have yet to assume anything about the
relationship between u1(x) and u2(x). For reasons which will become clear
in a few minutes lines, it will be most convenient to assume that

u′1(x)y1(x) + u′2(x)y2(x) = 0.

For our particular system, this corresponds to

u′1(x) sin(2x) + u′2(x) cos(2x) = 0. (8)

We now plug our hypothesized form of y(x) into the differential equation.
We need to compute y′′(x), so we first compute the first derivative. We have

dy

dx
= u′1(x) sin(2x) + 2u1(x) cos(2x) + u′2(x) cos(2x)− 2u2(x) sin(2x)

= 2u1(x) cos(2x)− 2u2(x) sin(2x)

where we have used (8) to simplify the equation. We now have

d2y

dx2
= 2u′1(x) cos(2x)− 4u1(x) sin(2x)− 2u′2(x) sin(2x)− 4u2(x) cos(2x).

11



We can now easily compute that

d2y

dx2
+ 4y(x) = 2u′1(x) cos(2x)− 2u′2(x) sin(2x) = sec(2x).

Bringing everything together, we can see that we need to satisfy the
system of equations

2u′1(x) cos(2x)− 2u′2(x) sin(2x) = sec(2x)

u′1(x) sin(2x) + u′2(x) cos(2x) = 0.
(9)

We want to solve this system of two equations in two unknowns for u′1(x)
and u′2(x). The most efficient method is through matrix algebra (although
solving the two equations successively will also work). If you do not know
any matrix algebra, you may skip to the formulas and verify that they work.
We have that (9) can be represented in matrix form and as[

2 cos(2x) −2 sin(2x)
sin(2x) cos(2x)

] [
u′1(x)
u′2(x)

]
=

[
sec(2x)

0

]
.

=⇒
[
u′1(x)
u′2(x)

]
=

1

2 cos2(2x) + 2 sin2(2x)

[
cos(2x) 2 sin(2x)
− sin(2x) 2 cos(2x)

] [
sec(2x)

0

]
.

It follows that we have the system

u′1(x) =
1

2
cos(2x) sec(2x) =

1

2

u′2(x) = −1

2
sin(2x) sec(2x) = −1

2
tan(2x).

All right, now we are finally getting somewhere! We have expressions for
the derivatives of the unknown functions u1(x) and u2(x) in terms of things
we know. All that remains to do is integrate. We have

u1(x) =

∫
1

2
dx =

x

2

and

u2(x) = −1

2

∫
tan(2x) dx =

1

4
ln | cos(2x)|.

Recalling that our form for yp(x) was yp(x) = u1(x) sin(2x) + u2(x) cos(2x),
we have that

yp(x) =
1

2
x sin(2x) +

1

4
cos(2x) ln | cos(2x)|.
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That’s it! It can be verified (although, with a lot of work!) that this satisfies
(7) so that we have found the correct form of the particular solution. It
should be obvious at this point that, no matter how long we spent guessing
trial function forms for yp(x), we would have been very unlikely to have ever
stumbled upon this particular form. Variation of parameters was absolutely
necessary for solving this problem. The general form of the solution is

y(x) = C1 sin(2x) + C2 cos(2x) +
1

2
x sin(2x) +

1

4
cos(2x) ln | cos(2x)|.

It should also be obvious that this is not a procedure that we would
like to go through every time we want to compute a particular solution.
Fortunately, the procedure we have outlined here can be perform for the
general solution for yp(x) = u1(x)y1(x) + u2(x)y2(x). The following result,
which is proved in Section 3.6 of the text, allows us to skip most of the
computation (but will not allow us to avoid the integration!).

Theorem 4.1. Consider a nonhomogeneous linear differential equation of
the form

d2y

dx2
+ p(x)

dy

dx
+ q(x) = g(x)

with fundamental solutions y1(x) and y2(x). Then the particular solution is
given by

yp(x) = u1(x)y1(x) + u2(x)y2(x)

where

u1(x) = −
∫

y2(x)g(x)

W (y1, y2)(x)
dx

u2(x) =

∫
y1(x)g(x)

W (y1, y2)(x)
dx

where W (y1, y2)(x) is the Wronkian of y1 and y2 evaluated at the point x.
Furthermore, the general solution is given by

y(x) = C1y1(x) + C2y2(x) + yp(x).

We should stop to make a few notes about these formulas:

• While this looks great in principle—we have an explicit formula for
the particular solution!—in general, it can be very hard to solve the
integrals required of u1(x) and u2(x) explicitly. If the method of un-
determined coefficients is possible, it will save a significant amount of
time to use it.
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• This is one of the few times in this course where I will concede that it
is actually easier to use the formulas than to remember the method.
Having seen the method performed in detail once, we will now be
content to use the general formulas.

• This method works even for linear differential equations which do not
have constant coefficients. There is one subtle point to make here—
we still need to have the fundamental solutions y1 and y2 to the ho-
mogeneous problem given to us, and they may not be known if the
coefficients are not constants.

Example 1: Verify that the particular solution of the differential equa-
tion

d2y

dx2
+ 4y(x) = 12x

is yp(x) = 3x by using variation of parameters.

Solution: We now just need to identify the required factors in the
original statement of the problem, and then apply the formulas. We know
that y1(x) = sin(2x), y2(x) = cos(2x), and g(x) = 12x. We can easily
compute that

W (y1, y2)(x) = y1(x)y′2(x)− y′1(x)y2(x) = −2 sin2(x)− 2 cos2(x) = −2.

It follows by the formulas that we have

u1(x) = −
∫

y2(x)g(x)

W (y1, y2)(x)
dx

=
1

2

∫
12x cos(2x) dx

=
3

2
(2x sin(2x) + cos(2x))

and

u2(x) =

∫
y1(x)g(x)

W (y1, y2)(x)
dx

= −1

2

∫
12x sin(2x) dx

= −3

2
(sin(2x)− 2x cos(2x))
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where the integrals have been computed using integration by parts (not
shown). The particular solution is then given by

yp(x) = u1(x)y1(x) + u2(x)y2(x)

=
3

2
(2x sin(2x) + cos(2x)) sin(2x)− 3

2
(sin(2x)− 2x cos(2x)) cos(2x)

= 3x(sin2(2x) + cos2(2x)) = 3x.

So we have recovered our previous answer. It should be obvious at this
point, however, that the method of undetermined coefficients, while less
powerful, is significantly easier to use when it can be applied. In this case,
we skipped most of the details, and still have to integrate by parts twice
while remembering a pair of complicated formulas. Nevertheless, we should
be happy that the two methods gave the answers. It would have been a
shame to go through all that work to find out we have missed a sign, or
forget which factor was placed into which formula.

Example 2: Use the method of undetermined coefficients to find the
general solution of

(1− x)
d2y

dx2
+ x

dy

dx
− y = (1− x)2

given that y1(x) = ex and y2(x) = x are solutions of the corresponding
homogeneous equation

(1− x)
d2y

dx2
+ x

dy

dx
− y = 0.

Solution: The difference with this problem is we do not have a simple
method by which determine the solutions of the homogeneous equation, since
the coefficients are non-constant. Nevertheless, we can check that y1(x) = ex

and y2(x) = x are solutions through direct substitution.
Given these two functions, however, the steps for obtaining the particular

solution is the same. We first need to write the equation in standard form.
We have

d2y

dx2
+

(
x

1− x

)
dy

dx
−
(

1

1− x

)
y = 1− x.

It follows that we have y1(x) = ex, y2(x) = x, and g(x) = 1 − x. It follows
that

W (y1, y2)(x) = y1(x)y′2(x)− y′1(x)y2(x)

= ex(1)− ex(x)

= ex(1− x).
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Consequently

u1(x) = −
∫

y2(x)g(x)

W (y1, y2)(x)
dx

= −
∫

x(1− x)

ex(1− x)
dx

= −
∫

xe−x dx

= (1 + x)e−x

where we have applied integration by parts on the final step. We also have

u2(x) =

∫
y1(x)g(x)

W (y1, y2)(x)
dx

=

∫
ex(1− x)

ex(1− x)
dx

=

∫
(1) dx

= x.

The particular solution is therefore

yp(x) = u1(x)y1(x) + u2(x)y2(x)

= 1 + x + x2.

It follows that the general solution is

y(x) = C1e
x + C2x + 1 + x + x2 = C̃1e

x + C̃2x + 1 + x2.

Note in particular that it was important to write the equation is standard
form before attempting to solve. Otherwise, we would have ended up with an
incorrect answer (and probably not even been able to get past the integration
step!).
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