MATH 319, WEEK 8:
Mechanical Systems, Resonance

1 Pendulum/Spring Model

Let’s reconsider the pendulum/spring model from last week. We used New-
ton’s second law F' = ma to derive the equation
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which gives the second-order homogeneous linear differential equation with
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We can now solve this equation! We can also interpret the solution of
this equation. First of all, we have the guess solution y(z) = €™ yields
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The only thing that is different than the general case is that the constants
are assumed, for physical reasons, to be strictly positive (i.e. m > 0, ¢ > 0,
k> 0).

We have the following three cases:

1. Overdamped: If ¢> > 4mk then (1) has the general solution
x(t) = Cre™t + Coe™t.

2. Critically damped: If ¢> = 4mk then (1) has the general solution
z(t) = Cre™ + Cyte'.

3. Underdamped: If ¢ < 4mk then (1) has the general solution
x(t) = e (Cy cos(Bt) + Cysin(Bt))

where oo = Re(r) and 8 = Im(r).



Note: The positivity of the physical constants guarantees that either
r < 0or a<0solong as ¢ > 0. (Notice that this is not necessarily true for
the general case.) This guarantees that the exponential is always a decreas-
ing exponential. This says that the solution is always decaying toward its
resting state, as we would expect from a damped pendulum or spring.

Note: It is easy to see where the classifications (overdamped, critically
damped, and underdamped) come from. In Case (1) the damping parameter
exceeds the other combined parameters (c> > 4mk), in Case (2) they are
equal (¢? = 4mk), and in Case (3) the other parameters exceed the damping
(¢ < 4mk).

Note on physical units: In order to associate (2) with actual physical
models, we will need to give units to the variables and parameters. To
make computations as straight-forward as possible, we will consider the
units meters (m), kilograms (kg), and seconds (s) for length, mass, and
time, respectively. The question, remains, however, of what the units of the
parameters ¢ and k are. To answer this (as best we can), we recall that a
Newton is defined as m

N=1 k‘g?.

This is the basic unit of force. We recall that (2) was derived from a force
equation—consequently, the unit of each individual term in (2) (i.e. mz”(t),
cx'(t) and kxz(t)) must be Newtons! Since we know the units of x(t) (m),
2'(t) (m/s) and " (t) (m/s?) we see that the required units for ¢ and k are

m/s?
¢~ kgls = kgSn//s ! - mj\;s
kwkg/sz—W—i\;.

Thus we will give the restoring constant k in terms of Newtons per meter
and the frictional constant ¢ in terms of Newtons per unit velocity or New-
tons per meter per second.

Note on periodic solutions: In solutions to simple mechanical sys-
tems, we often encounter the form C; cos(wot)+Cs sin(wpt), which represents
some sort of periodic motion. What is not obvious from this form, however,
is that this is actually equivalent to a single phase-shifted trigonometric
function with a different amplitude. For instance, we can easily check that



3cos(t) + 4sin(t) is the same as 5cos(t — 0.927) (graph it!). In general, we
always have that

C cos(wot) + Co sin(wpt) = A cos(wot — )

for some A and a. We will see how to compute A and « through examples.
(You may have already been introduced to the method in a calculus course.)

Although the exponential dominates the long-term behavior (check by
taking the limit as ¢ — oo!), there are important qualitative differences
between the three cases. The difference comes in how the solutions approach
the resting state.

1. In Case 1, after a short transient period, solutions approach z = 0
monotonically. That is to say, solutions settle into a trajectory which
consistently gets closer as time passes—each second they are closer to
x = 0 than the last. (Note that trajectories may initial overshoot the
resting position if the initial velocity is sufficiently high.)

2. In Case 2, solutions again settled into a trajectory which consistently
gets closer to the resting position as time passes, but it takes longer
to settle into that trajectory. In fact, it takes the maximal amount of
time—if it takes any longer, it will enter into Case 3.

3. In Case 3, solutions oscillate as they approach z = 0. On average, the
solutions approach the resting position, but they continually overshoot
the resting position and then bounce back, and overshoot again. Notice
that these oscillations continue forever!

The three cases are illustrated by Figure 1. Notice how the exponential
dominates in all three cases. Even in Case 3, where solutions oscillate con-
tinuously, we may obtain important information about the way in which
solutions approach x = 0 by bounding the exponential portion of the solu-
tion.

Example 1: Consider a 2 kg weight attached to the end of a spring
which requires a force of 8 Newtons to stretch one meter. Suppose the
spring does not experience any damping. If the mass is initially stretched
2 meters to the right and released with an initial velocity of 2 meters per
second to the right, find the solution describing the position of the mass
as a function of time. Write the solution in the phase-shifted cosine form
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Figure 1: Example trajectories of the displacement of a damped pendu-
lum/spring for the three cases: (a) overdamped; (b) critically damped; and
(c) and underdamped. Notice that oscillations occur in the underdamped
case.

x(t) = Acos(wot + «).

Solution: The given information implies that m =2, k = 8 and ¢ = 0.
This gives the model

265; +8z(t) =0
with initial conditions x(0) = 2 and z'(0) = 2. The guess y(z) = €"* gives
e (22 +8) = 2e"*(r2 +4) = 0
so that » = +2i. It follows that the general solution has the form
x(t) = Cq cos(2t) + Co sin(2t).

To find the particular solution satisfying the initial conditions, we must
compute
2'(t) = —2C sin(2t) + 205 cos(2t).

The initial conditions give

JJ(O)ZQ = (1 =2
70)=2 = 20:=2 = (Cy=1.

It follows that the particular solution is

x(t) = 2 cos(2t) + sin(2t).



We want to put the solution in the form z(¢) = Acos(wot — ). What
we need to do is expand A cos(wpt — «) according to

A cos(wpt — o) = A cos(a) cos(wpt) + Asin(a) sin(wpt).
Comparing with the original equations gives wg = 2, and the system

Cy = Acos(a)
Cy = Asin(a).

If we square these equations, add them, and then simplify we get

A= /c?+cC2.

Furthermore, we can divide the equations to get

a = tan~! (gi) .

(Note that we may have to adjust « by a factor of m depending on which
quadrant it is in. It is a good idea to take the answer here and check with
the system (3).)

For our example, we have C; = 2 and C = 1sothat A = /22 +12 = /5
and o = tan"1(1/2) =~ 0.4636. We can check that this satisfies v/5 cos(0.4636) =
2 and v/55in(0.4636) = 1 so that we do not need to adjust by a factor of 7.

It follows that the solution can be written

z(t) = V/5 cos(2t — 0.4636).

See Figure 2(a) for a plot.

Example 2: Reconsider the set-up provided in Example 1, but assume
there is a damping of 4 Newtons for each meter/second of velocity. Find the
solution describing the position of the mass as a function of time. Write the
solution in the phase-shifted cosine form x(t) = A(t) cos(wot + «).

Solution: The given information tells us that we have m = 2, k = 8,
and ¢ = 4. This gives the model

d?x dx
22— +4— +8x(t) =0
gz i T

with initial conditions z(0) = 2 and 2/(0) = 2. The guess y(z) = €' gives

eT(2r? 4 4r +8) = 2" (12 +2r +4) =0



which implies
—24++v4—-16
Ma=———p) —— =-1% V3.
The general solution is given by

z(t) = e (O cos(V3t) + Oy sin(V/3t).

In order to determine the particular solution, we must find z/(t). We
have

'(t) = —e! (C’1 cos(V/3t) + Co sin(ﬁt))
+V3e ™ (—C’l sin(v/3t) 4 Cy cos(\/gt)) .

The initial conditions result in the system
Ch =2
-C1 + \/502 = 2.

It follows that C1 = 2 and Cy = %. It follows that the particular solution
is

r(t) =e (2 cos(V/3t) + \;lg sin(ﬁt)) :

A more insightful form of this equation is to write it as

x(t) = A(t) cos (wot + ) .

As before, we have A = \/C; +C3 = /22 + (4/V/3)% ~ 3.0551 and a =
tan=1(Cy/C1) = tan=1((4/+/3)/2) = tan~1(2/4/3) = 0.8571. We can easily
check that 3.0551 cos(0.8571) = 2 and 3.0551sin(0.8571) = % so that we
do not need to adjust by a factor of 7. It follows that the solution can be
written as

2(t) = 3.0551e~" cos (\/§t - 0.8571) .
See Figure 2(b) for a plot. It is worth noticing two things there:

1. Although the damped solution still oscillates, because of the additional
exponential term e~! we are guaranteed that eventually the amplitude
of the solution will decay to zero. This corresponds to the pendulum
or spring settling down to its equilibrium position, as we would expect
in any realistic model.



2. The quasi-frequency of the damped oscillations is p = /3 which is
smaller than the corresponding undamped value wg = 2. This means
that the wavelength is longer. Specifically, we have that the period
of the damped motion is v/3T = 27 so that T = (2/v/3)r. This
is greater than the wavelength of the undamped motion, which was
T = m. It follows that the addition of damping to the mechanism has
slowed the oscillations down. This might have been expected—friction
impedes motion, after all—but it will have important consequences in
a moment.

Figure 2: Behavior of an undamped (a) and damped (b) pendulum with
mass 2 kg and restoring for 8 N/m. Notice that the initial conditions z(0) =
2 and 2/(0) = 2 are the same for both simulations and coincides with the
behavior of the plotted trajectories at ¢t = 0.

Example 3: Now let’s consider what happens to this system with the
damping coefficient left general. That is to say, let’s consider the behavior
of the general system

d’x dx
2— — + 8x(t) = 0.
az g T80

Performing our standard analysis, we arrive at the quadratic

2+ er+8=0



which gives
—c++/c?—64
—

We make a few observations at this point.

T =

1. We notice first of all that there is a transition in the solution for at
c? = 64, i.e. ¢ = 8. Below this value (i.e. ¢ < 8) the solution oscillates
while above this value (i.e. ¢ > 8) the solution does not. The value
c = 8 is called the critical damping value.

2. We notice first of all that, so long as ¢ > 0 (that is to say, so long as
there is damping) then the solution will have negative exponentials.
(This is trivial for the complex and repeated real root case, since the
real part of r is —¢/4 < 0. For the two distinct real roots case, it
follows from the fact that V¢ — 64 < |¢| for ¢ > 8.) We can therefore
say that, regardless of the damping value, the long-term behavior of
the solution is always convergence toward zero. In other words, the
pendulum/spring always settles down if there is damping.

3. A quick analysis of the range 0 < ¢ < 8 reveals that the lengthening
of the quasi-frequency as the damping increases is a general property.
We have that the quasi-frequency is given by

V64 — c2

p=1Im(r) = —,

which converges to zero as ¢ — 8. Notice that the wavelength is
inversely related to the quasi-frequency, so that we can say the wave-
length grows to infinity as ¢ — 87. This tells us exactly what is hap-
pening at the critical damping value ¢ = 8! The wavelength lengthens
as the damping increases, and if we reach the critical damping value
the system’s ability to oscillate at all will be eliminated—because the
wavelength of oscillation has reached infinity.

2 Resonance

Now let’s consider what happens when we add a forcing term to the (low-
amplitude) pendulum and spring model. That is to say, in our force equation
from before, we allow

dx
F= Frestoring + Ffriction + Fforcing = —ki.’E(t) - CE + f(t)
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where f(t) represents a forcing term external to the system. This could
represents shaking the pendulum/spring manually or having the pendu-
lum/spring connected to some bigger machinery. This gives rise to the
non-homogeneous second-order differential equation

We will typically assume that the forcing is sinuisoidal—that is to say, we
will assume the forcing f(¢) can be represented by some combination of sines
and cosines. This represents shaking the undamped pendulum or spring with
a fixed frequency.

Consider the example of solving the following differential equation (cor-
responding to the physical model) with initial conditions xz(0) = 0 and

Z'(0) = 0: ,

d“z
7ol + 4x(t) = cos(wt)

where w # 2. (This corresponds to the pendulum system for a mass of 1
kg and a restoring constant k of 4 Newtons per meter. The parameter w
controls the frequency of the shaking and the initial conditions correspond
to starting the system at rest.)

We can have already seen that the complementary function for this dif-
ferential equation is

xc(t) = Cy cos(2t) + Co sin(2t).

Since w # 2, we use the trial function z,(t) = Acos(wt) + Bsin(wt). This
gives
xp(t) = — Aw? cos(wt) — Bw? sin(wt)

so that we have

xy(t) = — Aw? cos(wt) — Bw? sin(wt) + 4(A cos(wt) + Bsin(wt))
= (4 — w?)(Acos(wt) + Bsin(wt))

= cos(wt).

Since w # 2 implies w? # 4, it follows that A = 1/(4 — w?) and B = 0 so
that we have the general solution

x(t) = Cq cos(2t) + Casin(2t) + 10 cos(wt).



This has derivative

7' (t) = —2C sin(2t) + 2C5 cos(2t) — %

i t
— sin(wt)

so that the initial conditions x(0) = 0 and 2/(0) = 0 give the system

20, =0

which implies C; = —1/(4 — w?) and Cy = 0. Tt follows that the solution is

z(t) = b cos(2t) + % cos(wt)

4 — w? — w?
1

=10 (cos(wt) — cos(2t)) .

In terms of simplification, this is pretty good, but in fact we can do a
little better. The trigonometric identities cos(A + B) = cos(A) cos(B) —
sin(A) sin(B) and cos(A — B) = cos(A) cos(B) + sin(A) sin(B) can be sub-
tracted from one another to give 2sin(A) sin(B) = cos(A — B) —cos(A+ B).
If we take A = $(2+ w)t and B = (2 — w)t we have

A+ B=2t, and A— B =uwt.

Remarkably (but usefully?), this implies that the solution can be written as
the single term

o(t) = 5 _2w2 sin (; (2+w) t) sin <; (2 - w) t) |

Okay, this is getting a little ridiculous. What is the point of all this alge-
bra? Well, this is actually incredibly insightful for of the solution. We now
have the solution decomposed into two sine functions with different frequen-
cies (corresponding to the difference in the natural and forcing frequencies!).
In particular, if w is near 2, there is a separation of time-scales in the two
modes. We have that

1. There is a slow oscillatory mode with wavelength (47)/(2 — w). This
mode can be thought of as an envelop which restricts all other modes
(since all other modes must multiply through this function, so can only
be as big as this slow mode allows it to be). (See Figure 3(a))
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2. There is a fast oscillatory mode with wavelength (47)/(2 + w). This
mode oscillates faster than the other mode but is restricted through
each period by its slower counterpart.

3. Since sine is bound by —1 and 1, the maximal amplitude of the solution
is 2/(4 — w?).

This raises a very interesting question: What happens as the forcing
frequency is changed related to the fixed natural frequency of the system
(i.e. the frequency the undamped pendulum or spring swings when left
alone)? In particular, what happens as w — 27

We can consider this as w approaches 2 from either side, since the sepa-
ration of time-scales holds. We make the following observations:

1. The w approachs 2, the wavelength of the slow mode explodes while
the wavelength of the fast mode stays roughly the same. That is to say,
the separation in time-scales intensifies in that the number of times
the fast mode completes its cycle before the slow mode completes its
cycle becomes unbounded. (See Figure 3(b).)

2. The amplitude 2/(4 — w?) also explodes. In fact, in the limit, we have
that the amplitude is infinite. (See Figure 3(c).)

Figure 3: Solution of the mechanical system with sinusoidal forcing with (a)
w=1.7; (b) w = 1.875; and (c¢) w = 1.99. Notice that the y-axis grows as w
gets closer and closer to 2.

Something seems to be going incredibly wrong in this example. How can
we have the amplitude of our solution explode to infinity? Worst still, we
know that the solution still oscillates by a fixed period, so as time goes on

11



and one the solution (i.e. the pendulum or spring) will make jumps from
the positive extreme to the negative extreme in the same amount of time!
What is going on?

Let’s reconsider our physical example. What is really happening as w
approaches 27 Recall that 2 is the natural frequency term for the underlying
system. Is the term controlling how the body naturally oscillates if simply let
go. Now imagine shaking that in a very particular way—and in particular,
in a way that is completely in phase with the natural rhythm of the body.
WEell, then, every time the pendulum naturally wants to kick left, we give
it an extra push, and every time it wants to kick right, we give it an extra
push in that direction, too. If we do this exactly in sync with the body’s
natural rhythm, we imagine that the amplitude will certainly grow!

Before we get carried away with this example too far, we should rec-
ognize that there are certain physical constraints (e.g. damping, whether
in the form of friction or something else). We also neglected other physical
concerns. For a pendulum, for example, we will swing over the top far before
we will extend off to infinite in any diretion. And, for a spring, we imagine
that if we compress or overextend the spring too much it will simply break
rather than extend to infinite length. Nevertheless, this is an interesting
phenomenon to investigate and is a concern in many applications. What we
have discovered is resonance.

We might wonder what has happened with our solution. After all, we
cannot very well have z(t) = oo as a meaningful solution. Rather, the
solution breaks down, but if we consider the original differential equation
we immediately see why. If we have w = 2 we are in the case where we may
not use a trial function of the form z,(t) = Acos(2t) + Bsin(2t). We have
already solved this using the trial function z,(t) = At cos(2t) + Btsin(2t)
and got

2(t) = Ci cos(2t) + Cysin(2t) + %tsin(Zt).

The initial conditions 2(0) = 0 and 2/(0) = 0 give C; = Cy = 0 give the
simple solution

z(t) = %t sin(2t).

Just as we expected, we have a solution which oscillates with increasing
amplitude (as ¢ grows). In other words, we have filled in the gap in our
previous physical reasoning. Even though the solution methods were com-
pletely different, the limit of the previous solution approaches this resonate
solution as w approaches 2!
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