
MATH 319, WEEK 9:
Power Series Methods

1 Power Series Methods

Consider being asked to solve the differential equation

xy′′(x)− (1 + x)y′(x) + y(x) = 0.

The key difference between this second-order differential equation and the
previous ones we have considered is that the coefficients are not constants—
rather, they vary with x. While this may not seemed like a significant
change, it will prove disastruous for our previous intuition of guessing spe-
cific functional forms and cleaning things up as appropriate. There is no
general solution method for second-order differential equations with variable
coefficients. (It should be noted that this is not to say that solutions do not
exist, or are not easy to write down, just that there is no general way to find
them.)

We will have to rely on alternative analysis methods, but what? Numer-
ical methods immediately come to mind, but we do not currently have the
tools for such methodology for second-order systems (yet!) since these meth-
ods depended implicitly on having first-order derivatives. Consider instead
the following intuition:

1. Suppose the solution y(x) has a power series expansion

y(x) =
∞∑
n=0

an(x− x0)n.

2. If it does, we can differentiate this form term-by-term to obtain series
expansions for y′(x), y′′(x), and so on.

3. We can then plug these power series forms into the differential equa-
tion, rearrange, and solve for the coefficients an.

4. Wherever the power series converges, we can obtain an estimate for the
value of the solution at that point by computing a sufficient number
of terms in the expansion.
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On the face of it, this seems very similar (but more work!) than a numerical
method because we cannot generally evaluate an infinite sum and so may
only typically estimate the value of interest by taking a truncated sum. We
will see that this method can also on occasion lead to a general analytic
solution as well.

Let’s see how this might play out for our example. For simplicity, we
will assume the power series is centered at x0 = 0. (This value of x0 will
generally be given to us.) So we are looking for a solution of the form

y(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · · .

Differentiating term-by-term yields

y′(x) =
∞∑
n=0

nanx
n−1 =

∞∑
n=1

nanx
n−1

= a1 + 2a2x+ 3a3x
2 + · · ·

and

y′′(x) =
∞∑
n=0

n(n− 1)anx
n−2 =

∞∑
n=2

n(n− 1)anx
n−2

= 2a2 + 6a3x+ 12a4x
2 + · · ·

where we have removed from the sum the terms which evaluate to zero. We
can now plug this into the left-hand side of the differential equation to get

xy′′(x)− (1 + x)y′(x) + y(x)

= x
∞∑
n=2

n(n− 1)anx
n−2 − (1 + x)

∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n

We will have to be a little bit careful at the point with our indexing, and
how we split our sums. We want to move the terms x and 1 + x inside
the summations. We notice that they multiply every term in the associated
sums, so that we can actually just float them into the summations directly.
We have

∞∑
n=2

n(n− 1)anx
n−1 −

∞∑
n=1

nanx
n−1 −

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n

We now want to collect like terms according to their powers of x. This
cannot be done directly, since two of the sums are with respect to xn−1 and
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two are with respect to xn. To resolve this, we will need to reindex two of
the summations to match the others. This can be a tricky task in general!
In fact, I would go so far as to say it is not even obvious that we should be
able to do this at all. But we can easily check that

∞∑
n=2

n(n− 1)anx
n−1 = 2a2x+ 6a3x

2 + 12a4x
3 + · · ·

and
∞∑
n=1

(n+ 1)nan+1x
n = 2a2x+ 6a3x

2 + 12a4x
3 + · · ·

give exactly the same series. It should also be now clear how they were
correspond. If we want to shift the index inside the summation (i.e. the n)
up we need to shift the starting point for the summation down. A similar
rule applies for shifting interior indices down (the external bounds must be
shifted up).

It should not take much convincing to see that the original series can in
fact be written as

∞∑
n=1

(n+ 1)nan+1x
n −

∞∑
n=0

(n+ 1)an+1x
n −

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n

This is terrific! But we are not done yet. The summations do not begin
at the same index, so we cannot yet combine them. To resolve this (small)
problem all we need to do is take out all of the terms below the lowest
common starting point for the sums. That is to say, because our sums start
at either n = 0 and n = 1, we simply take out all of the terms in the
sums corresponding to n = 0. (Note that only two of the sums have terms
corresponding to n = 0!) This gives us

−a1 + a0 +

∞∑
n=1

(n+ 1)nan+1x
n −

∞∑
n=1

(n+ 1)an+1x
n −

∞∑
n=1

nanx
n +

∞∑
n=1

anx
n

We may now (finally!) combine the summations. We have

a0 − a1 +

∞∑
n=1

[(n+ 1)nan+1 − (n+ 1)an+1 − nan + an]xn

= a0 − a1 +
∞∑
n=1

[(n+ 1)(n− 1)an+1 + (1− n)an]xn = 0.

(1)
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Noticing that the n = 1 term evaluates to zero, what this expression is
really telling us is that

(a0 − a1) + (3a3 − a2)x2 + (8a4 − 2a3)x
3 + · · · = 0.

The only way for this to hold is if every coefficient is equal to zero. That is
to say, we need to have

a0 − a1 = 0, 3a3 − a2 = 0, 8a4 − 2a3 = 0, etc.

It would be a lot of work to do this for each term individual. We notice, how-
ever, that our general form (1) gives a far more general form corresponding
to the coefficients being equation to zero. We have that

a0 − a1 = 0

and the far more important

(n+ 1)(n− 1)an+1 + (1− n)an = 0 =⇒ an+1 =
an
n+ 1

where the last form is valid for n ≥ 2 only. In other words, we can explicitly
relate each coefficient in the power series expansion to the previous one by
a recurrence relation.

There are several possibilities at this point, which will depend sensitively
on the particular problem under consideration and the available resources
at hand (e.g. is a computer handy?):

1. We may be interested only the first few terms of the power series for
y(x) (e.g. four or five terms). In that case, we will compute a0 through
a4 or a5 and neglect the rest of the terms.

2. We may be able to find a general solution for as a result of the recur-
rence relation, in which case we are looking for an explicit closed form
for an. This form is usually in terms of a0 or a1.

3. We may be able to identify the relationship between the an, but not
be able to give a closed form for it. In this case, we just do the best
we can.

In this case, we will try to find the general form for an. That is to say, we
want to solve the recurrence relation. We start by considering a0 − a1 = 0,
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which immediately gives us a1 = a0. We now consider the general recurrence
relation. We have

an+1 =
an
n+ 1

=⇒ an =
an−1
n

.

We can see that, increasing n, we have

n = 3 =⇒ a3 =
a2
3

n = 4 =⇒ a4 =
a3
4

=
a2

4 · 3
n = 5 =⇒ a5 =

a4
5

=
a2

5 · 4 · 3
...

We might conjecture at this point that the general form of the term is

an = 2 · a2
n!
.

This can be proved by induction, but we will not perform this task, instead
taking the fact as obvious. This gives the general form for the solution

y(x) =
∞∑
n=0

anx
n = a0(1 + x) + 2a2

∞∑
n=2

xn

n!
.

This is the power series solution representation of y(x).
We might notice, however, that the final sum is very close to the Taylor

series expansion for ex. In fact, it only differs in the first two terms n = 0
and n = 1, which are missing from the sum. We can be somewhat creative,
therefore, and complete the sum. To do this, we need to add 1 + x to the
sum, which means we need to subtract it at the same time. This gives

y(x) = a0(1 + x) + 2a2

[
(−1− x) + 1 + x+

∞∑
n=2

xn

n!

]

= a0(1 + x) + 2a2

[
(−1− x) +

∞∑
n=0

xn

n!

]

= (a0 − 2a2)(1 + x) + 2a2

∞∑
n=0

xn

n!
.

This may not seem like much, but it is actually pretty remarkable! The terms
a0 and a2 are undetermined constants, and the summation corresponds to
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the Taylor series expansion of ex. It follows that we have

y(x) = C1(1 + x) + C2e
x

where C1 = a0 − 2a2 and C2 = 2a2. (This answer can be easily checked.)
That is to say, we have successfully used the power series method to find
the general solution of the differential equation. This should be remarkable,
since we had no direct method for solving this particular differential equa-
tion. (Although we should be slightly discouraged by the amount of work it
took!)

We should stop here to make a few notes:

• It is not generally the case that we will be able to correspond our final
power series solution to analytic solutions of the form ex, ln(x), etc.
In general, having the answer in series form may be the best we can
do.

• Notice that, as a result of the recurrence relationship, we will have our
series written in terms of some (two, in our case) baseline constants
which will not be solved for numerical. As in the example above, these
will correspond to our undetermined constants in the general solution,
and can be solved for numerically by appropriate initial conditions.

• It may be very difficult to determine an explicit form for the general
terms an. In such cases, it is more common to seek out the first three
or four terms, and disregard the rest.

2 General Properties of Power Series

We should pause to review some general properties about power series. The
first thing we should probably recall is that all of the elementary functions
have expansions in terms of a special kind of power series known as a Taylor
series, i.e. a series of the form

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n.
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That is to say, the power series with an = f (n)(x0)/n!. We have the following
well-known Taylor series expansions:

ex =

n∑
n=0

1

n!
xn = 1 + x+

x2

2
+
x3

6
+ · · ·

sin(x) =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

6
+

x5

120
− · · ·

cos(x) =
∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2
+
x4

24
− · · ·

ln(1− x) = −
∞∑
n=1

1

n
xn = −x− 1

2
x2 − 1

3
x3 − · · · , −1 ≤ x < 1

1

1− x
=
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · , |x| < 1.

We should also remind ourselves that power series are not guaranteed
to converge for all x ∈ R. They may have a limited radius of convergence,
|x − x0| < ρ, outside of which the series does not settle down as n → ∞
(i.e. as we take more terms). The most common test for the convergence of
power series is the ratio test, which says, if we evaluate

lim
n→∞

∣∣∣∣an+1(x− x0)n+1

an(x− x0)n

∣∣∣∣ = |x− x0| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x− x0|L

then the series converges if |x− x0|L < 1 and diverges if |x− x0|L > 1. The
endpoints, where |x − x0|L = 1, have to be considered separately since the
test does not apply to them.

Example: Show that the Taylor series expansion given above for ex

converges for all x while the expansion for ln(1 − x) converges only for
−1 ≤ x < 1.

Solution: The series for ex has an = 1/n! so we compute

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = |x| lim
n→∞

∣∣∣∣1/(n+ 1)!

1/n!

∣∣∣∣
= |x| lim

n→∞

n!

(n+ 1)!
= |x| lim

n→∞

1

n+ 1
= 0.
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Since this is clearly less than 1 for any value of x we could happen to choose,
we have that the series converges for all x ∈ R. For the series ln(1− x), we
have an = −1/n so that

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = |x| lim
n→∞

∣∣∣∣(1/(n+ 1)

1/n

∣∣∣∣ = |x| lim
n→∞

n

n+ 1
= |x|.

Clearly, we have that this is only less than 1 if |x| < 1 so that the interval
of convergence is 1. To check the endpoints, when |x| = 1, we have to the
consider the series exactly. For x = −1 we have

∞∑
n=1

(−1)n+1

n

which converges. For x = 1 we have

−
∞∑
n=1

1

n

which diverges (harmonic series). It follows that the interval of convergence
is −1 ≤ x < 1 and we are done.

For this course, we will not need to consider many more details of power
series, except to recall that in order to add, subtract, or multiply two or
more power series, or to differentiate or integrate a single power series, all
we need to do is apply the operations term-by-term, and the resulting series
will converge on the same interval (except perhaps the end points). That is
to say, power series are very easy to manipulate!

2.1 Ordinary Points and Initial Value Problems

We will not investigate the theory underlying power series methods in depth,
but it will be important to make one clarification about the general second-
order differential equation

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = 0. (2)

It is reasonable to ask what conditions are sufficient for the method to
work. After all, we don’t want to be wasting our valuable time performing
operations we should have realized were doomed to failure at the start!

Fortunately, the answer is very simple.
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Lemma 2.1. Suppose P (x), R(x), and Q(x) are polynomials with no com-
mon factors and P (x0) 6= 0. Then there is a neighbourhood of x0, |x−x0| <
ρ, in which a power series solution of (2) exists and converges.

The justification depends on the existence and uniqueness theorem for
second-order linear differential equations, which we did not cover in class,
but which can be found in Section 3.2 of the text (Theorem 3.2.1). We made
the following notes:

• The points x ∈ R such that P (x) 6= 0 are called ordinary points.
The points x ∈ R such that P (x) = 0 are called singular points.

• The important connection to make with Theorem 3.2.1 is with regards
to initial value problems. This result tells us that, if x0 is an ordinary
point, then the initial value problem for the power series centered at
x0 can be solved. It will be important, therefore, to center our power
series at ordinary points if we can!

Example 1: Show that the initial value problem

xy′′(x)− (1 + x)y′(x) + y(x) = 0, y(0) = a, y′(0) = b

is ill-posed (i.e. cannot be solved). Explain this in terms of Lemma 2.1.

Solution: We have that the solution can be represented as a power
series

y(x) = a0(1 + x) + 2a2

∞∑
n=2

xn

n!
.

We suspect that, since there are two unsolved constants, a0 and a2, that we
will be able to solve for them uniquely by applying initial conditions. We
notice that we have

y′(x) = a0 + 2a2

∞∑
n=2

xn−1

(n− 1)!

= a0 + a2

∞∑
n=1

xn

n!
.

We can see that y(0) = a implies a0 = a while y′(0) = b implies a0 = b. This
is an inconsistent system, since a0 only has a consistent value if a = b, and
a2 is never determined.
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But what has gone wrong? Recall our lemma! We were only guaranteed
to have a solution to the initial value problem around a point x0 if that
point was an ordinary point. In this case we centered around x0 = 0 and
we have that P (x0) = x0 = 0 so that x0 is a singular point. We should not
be surprised to find that our initial value problem is ill-posed at this point.
(In fact, we should be surprised that we were able to even obtain a solution
using that point!)

Example 2: Find the first six non-zero terms in the power series solution
(centered at x0 = 1) of the following initial value problem

y′′(x)− xy(x)− y = 0, y(1) = 0, y′(1) = 1.

Use this to estimate the value of y(2).

Solution: We first of all note that P (x) = 1 so that x0 = 1 (and in fact,
any point) is an ordinary point so that we will be able to find a solution
centering there. We assume the form

y(x) =
∞∑
n=0

an(x− x0)n =
∞∑
n=0

an(x− 1)n

to get

y′(x) =
∞∑
n=1

ann(x− 1)n−1

and

y′′(x) =

∞∑
n=2

ann(n− 1)(x− 1)n−2.

Substituting this into the left-hand side of the differential equation gives

∞∑
n=2

ann(n− 1)(x− 1)n−2 − x
∞∑
n=1

ann(x− 1)n−1 −
∞∑
n=0

an(x− 1)n.

It is tempting to immediately carry the stray x term into the corresponding
summation; however, this would produce terms of the form x(x− 1)n−1 and
not the desired form (x − 1)n. In order to resolve this, we must rewrite
x in factors of the power term x − 1. In this case, we can simply write
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x = (x− 1) + 1 to get

∞∑
n=2

ann(n− 1)(x− 1)n−2 − [(x− 1) + 1]

∞∑
n=1

ann(x− 1)n−1 −
∞∑
n=0

an(x− 1)n

=
∞∑
n=2

ann(n− 1)(x− 1)n−2 −
∞∑
n=1

ann(x− 1)n

−
∞∑
n=1

ann(x− 1)n−1 −
∞∑
n=0

an(x− 1)n.

We now reindex the sums so that they have common terms (x − 1)n. This
gives

∞∑
n=0

an+2(n+ 2)(n+ 1)(x− 1)n −
∞∑
n=1

ann(x− 1)n

−
∞∑
n=0

an+1(n+ 1)(x− 1)n −
∞∑
n=0

an(x− 1)n.

To combine the terms, we may start no lower than n = 1, so we much extra
the terms corresponding to n = 0 from the sums. After a little rearranging,
this gives

2a2 − a1 − a0 +

∞∑
n=1

[an+2(n+ 2)(n+ 1)− (n+ 1)(an+1 + an)] (x− 1)n = 0.

Equating coefficients on the left-hand and right-hand sides gives

2a2 − a1 − a0 = 0 and an+2(n+ 2)(n+ 1)− (n+ 1)(an+1 + an) = 0.

This simplifies to the general recursion relationship

an =
an−1 + an−2

n

for n ≥ 2.
We are probably not going to be able to immediately identify a general

solution for the terms an, but we can still (and will always be able to!)
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determine the first few terms in the series. We have

a2 =
a1 + a0

2
=
a1
2

+
a0
2

a3 =
a2 + a1

3
=

(a12 + a0
2 ) + a1

3

=
a1
2

+
a0
6

a4 =
a3 + a2

4
=

(a12 + a0
6 ) + (a12 + a0

2 )

4

=
a1
4

+
a0
6

a5 =
a4 + a3

5
=

(a14 + a0
6 ) + (a12 + a0

6 )

5

=
3

20
a1 +

a0
15
.

In other words, we can determine (with a little work!) how each coefficient
of the power series solutions depends on a0 and/or a1. In the end, we have
the series

y(x) =
∞∑
n=0

an(x− 1)n

= a0 + a1(x− 1) +
(a1

2
+
a0
2

)
(x− 1)2 +

(a1
2

+
a0
6

)
(x− 1)3

+
(a1

4
+
a0
6

)
(x− 1)4 +

(
3

20
a1 +

a0
15

)
(x− 1)5 + · · ·

= a0

[
1 +

1

2
(x− 1)2 +

1

6
(x− 1)3 +

1

6
(x− 1)4 +

1

15
(x− 1)5 + · · ·

]
+ a1

[
(x− 1) +

1

2
(x− 1)2 +

1

2
(x− 1)3 +

1

4
(x− 1)4 +

3

20
(x− 1)5 + · · ·

]
Factoring the solution by a0 and a1 allows us to make the immediate

correspondence between the power series form and the general form

y(x) = C1y1(x) + C2y2(x).

That is to say, it allows us to extract a fundamental solution set in the form
of independent series!

This form also allows us to quickly evaluate the initial conditions: y(1) =
0 and y′(1) = 1. In general, this could be a substantial task. The solution is
composed of infinite sums, but we suspect that we may have to evaluate an

12



infinite sum when computing a0 or a1. We notice, however, that evaluating
x = 1 immediately eliminates all of the factored forms (x − 1)n from the
summation! Once we remove these terms, we are left with

y(1) = 0 =⇒ a0 = 0

and
y′(1) = 1 =⇒ a1 = 1.

It follows that the particular solution is

y(x) = (x− 1) +
1

2
(x− 1)2 +

1

2
(x− 1)3 +

1

4
(x− 1)4 +

3

20
(x− 1)5 + · · ·

We can now easily estimate the value of y(2) by evaluating

y(2) ≈ (1) +
1

2
(1)2 +

1

2
(1)3 +

1

4
(1)4 +

3

20
(5)5 =

12

5
= 2.4.

This is close to the true value of y(2) = 2.517182610 but we should not be
surprised that we will have to take significant more terms in order to get a
truly “good” estimate. If be go up to the x10 term, we obtain the estimate
y(2) = 2.516316138 which is accurate to two decimal places. Going up to the
x20 term gives the estimate y(2) = 2.517182608, which is accurate to seven
decimal places. And so on. We can see that the trade off being this and
the earlier numerical methods is roughly the same: the greater the accuracy
desired, the greater the computation resources required.

13


