
MATH 319, WEEK 11 & 12:
Laplace Transforms: Discontinuous Forcing

Functions

1 Piecewise Functions

In the motivation for Laplace Transforms, we were led to believe that one
of the primary advantages of this method is that it easily handles non-
smooth and even discontinuous forcing functions (i.e. nonhomogeneities).
In order to handle such cases, we must expend a little energy developing the
framework for the Laplace transform of piecewise-defined functions.

Consider computing the Laplace transform of the following function:

f(x) =


x, 0 ≤ x < 1
2− x, 1 ≤ x < 2
0, x ≥ 2

(1)

Such a function is commonly called a “tent” function (see Figure 1).

Figure 1: The piecewise defined function g(t) given in equation (1) over the
interval 0 ≤ x ≤ 4.

This could model, for instance, an external signal that begins to climb
at x = 0, then begins to fall at x = 1, and eventually reaches zero (i.e. no
signal) at x = 2. Such forcing functions were notoriously difficult to handle
in the classical differential equation setting since we essentially had to solve
the differential equation independently in each region—i.e. we had to solve
the differential equation three times!

Now consider computing the Laplace transform of such a function. From
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the definition, we have that

L{f(x)} =

∫ ∞
0

e−sxf(x) dx

=

∫ 1

0
xe−sx dx+

∫ 2

1
(2− x)e−sx dx

=

[
−e
−s

s
+

1

s

∫ 1

0
e−sx dx

]
− 2

e−2s

s
+ 2

e−s

s

+

[
2
e−2s

s
− e−s

s
− 1

s

∫ 2

1
e−sx dx

]
=

1

s2
(
1− 2e−s + e−2s

)
where we have applied integration by parts several times and cleaned up the
resulting expression.

That was a fair bit of work, but we should be relatively happy with the
outcome! What this tells us that, in the Laplace transform world, piecewise
defined functions correspond to a single function of s. This is a big deal!
We will be able to solve differential equations with piecewise-defined forcing
terms in exactly the same way as we have been traditional forcing terms (or
no forcing term at all).

2 Heaviside Functions

It is not convenient to apply the definition of a Laplace transform every time
we use one. Rather, we want to develop a system of rules for handling piece-
wise defined functions. The key to accomplishing this will be first defining
the Heaviside function

uc(x) =

{
0, 0 ≤ x < c
1, x ≥ c

The Heaviside function can be thought of as an “on”/“off” switch with a
trigger value c. If we look to the left of c, the function evaluates to zero (the
“off” state), and if we look to the right of c, the function evaluates to one
(the “on” state).

The importance of the Heaviside function lies in the fact that it can be
combined with itself and other functions to generalize the notion of turning
functions “on” or “off” over certain regions of x. In particular, if d > c we
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can define

uc(x)− ud(x) =


0, 0 ≤ x < c
1, c ≤ x < d
0, x ≥ d

In other words, we are only in the “on” state in the region c ≤ x < d;
otherwise, we are “off”. So this form allows us to define bounded intervals
which are “on”.

Of course, what we are interested in turning “off” and “on” is not sim-
ply the value one. Rather, we are manipulating functions. In particular,
consider the piecewise define function defined earlier:

f(x) =


x, 0 ≤ x < 1
2− x, 1 ≤ x < 2
0, x ≥ 2

What this definition means is that the function f1(x) = x is “on” in the
region 0 ≤ x < 1, and then turned “off” at x = 1 when the new function
f2(x) = 2 − x is turned “on”. Finally, at x = 2, f2(x) = 2 − x is turned
“off” and the trivial function f3(x) = 0 is turned “on”.

In fact, we can make use of exactly this intuition! For f1(x) = x to be
turned “on” in the region 0 ≤ x < 1, we need to have

(1− u1(x))f1(x) = (1− u1(x))x

where we notice that 1 − u1(x) is “on” for 0 ≤ x < 1 and “off” for x ≥ 1.
Similarly, the idea of turning f2(x) = 2−x “on” at x = 1 and “off” at x = 2
is captured by

(u1(x)− u2(x))f2(x) = (u1(x)− u2(x))(2− x).

Finally, we can turn f3(x) = 0 “on” at x = 2 with

u2(x)f3(x) = 0.

It follows that the piecewise defined function can be written in terms of
Heaviside functions as

f(x) = (1− u1(x))x+ (u1(x)− u2(x))(2− x)

= x+ 2u1(x)(1− x) + u2(x)(x− 2)
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3 Laplace Transform of Heaviside Functions

We have already seen that we could compute the Laplace transform of piece-
wise defined functions, so let’s see how the Laplace transforms handles the
Heaviside function. First of all, by the definition we can see that

L{uc(x)} =

∫ ∞
0

uc(x)e−sx dx = lim
A→∞

∫ A

c
e−sx =

e−cs

s
, s > 0.

In particular, we notice that this generalizes for the case c = 0, corresponding
to a function which is always “on”, to the identity

L{u0(x)} = L{1} =
1

s
.

Whenever we see a term e−cs in the transformed world, therefore, we will
immediately suspect that the Heaviside function is involved. Notice that we
also have the inverse identity

L−1
{
e−cs

s

}
= uc(x).

We now want to consider what happens to functions which are turned
“off” or “on” at a particular value. We know that we can formulate this
intuition using Heaviside functions, so this is really a question of how we take
Laplace transforms of functions which interact with Heaviside functions. We
have the following result.

Theorem 3.1. Suppose F (s) = L{f(x)} and uc(x) is the Heaviside func-
tion centered at c ≥ 0. Then

L{uc(x)f(x− c)} = e−csF (s)

and, conversely,
L−1

{
e−csF (s)

}
= uc(x)f(x− c).

What is distinctive about this result is that the domain shift x − c in
the y and x variable system disappears when we apply the transformation.
While this is perhaps unexpected—and will be easy to forget!—the proof is
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straight-forward. By definition, we have

L{uc(x)f(x− c)} =

∫ ∞
0

uc(x)e−sxf(x− c) dx

=

∫ ∞
c

e−sxf(x− c) dx

= e−cs
∫ ∞
0

e−sx̃f(x̃) dx̃

= e−csF (s)

where we have made the substitution x̃ = x − c (so that dx = dx̃ and
e−sx = e−sce−sx̃).

Note: The trick with applying this result will be to make sure that the
function multiplying the Heaviside function is always arranged in factors of
x− c. Otherwise, the result does not apply and our answer will be wrong!

Example 1: Determine the Laplace transform of x2u1(x).

Solution: We want to use our Theorem, but we cannot directly evaluate

L
{
x2u1(x)

}
because f(x) = x2 is not factored according to x− 1. This can be corrected
by adding and subtracting terms appropriately. In this case, we notice that
we have

(x− 1)2 = x2 − 2x+ 1.

Rearranging, we have

x2 = (x− 1)2 + 2x− 1 = (x− 1)2 + 2(x− 1) + 1

where we had added and subtracted terms as appropriate. Finally, we have

L
{
x2u1(x)

}
= L

{
((x− 1)2 + 2(x− 1) + 1)u1(x)

}
= e−s

(
2

s3
+

2

s2
+

1

s

)
.

Notice that in the last step we have ignored the time-shift! This is because,
making the substitution x̃ = x− 1, we have f(x− 1) = f(x̃) = x̃2 + 2x̃+ 1.
This is the function corresponding to the Laplace transform F (s) in the
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Theorem!

Example 2: Determine the inverse Laplace transform of

e−πs
4

s2 + 16
.

Solution: We have the strong indication from the e−πs in the transform
that there will be a Heaviside function uπ(x) in our solution. In particular,
we expect the shift x− π. First of all, however, we recognize that

L−1
{

4

s2 + 16

}
= sin(4x).

Applying our shift x− π to this form, we have that

L−1
{
e−πs

4

s2 + 16

}
= uπ(x) sin(4(x− π)).

Example 3: Use Theorem 3.1 to determine the Laplace transform of

f(x) =


x, 0 ≤ x < 1
2− x, 1 ≤ x < 2
0, x ≥ 2

Solution: We know from our earlier work that f(x) can be written in
the form

f(x) = x+ 2u1(x)(1− x) + u2(x)(x− 2).

In order to determine the Laplace transform, we need to compute

L{f(x)} = L{x}+ 2L{u1(x)(1− x)}+ L{u2(x)(x− 2)} .

The only trick at this point is that we need each term multiplying a Heaviside
function uc(x) to be expressed in terms of the difference x− c. In this case,
we are almost done! We already have the differences x−1 and x−2 explicitly
in the equations (this is not generally the case!). We may choose one final
piece of simplification by get

L{f(x)} = L{x} − 2L{u1(x)(x− 1)}+ L{u2(x)(x− 2)}

=
1

s2
(
1− 2e−s + e−2s

)
as before.
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4 Piecewise-Defined Forced Initial Value Problems

Consider now solving the differential equation

d2x

dt2
+ 2

dx

dt
+ 2x(t) = g(t), x(0) = 0, x′(0) = 0

where

g(t) =


t, 0 ≤ t < 1
2− t, 1 ≤ t < 2
0, t ≥ 2

(2)

This could correspond to the model for a damped pendulum which un-
dergoes an escalation in forcing to the right which grows linearly until t = 1,
and then starts to ease before disappearing entirely at t = 2 (an escalating
breeze, perhaps). Doing this by our previous method would requite solving
the differential equation three times in each of the intevals. Now we want
to determine the solution using the (one-step) Laplace transform method.

First of all, we have to take the Laplace transform of the entire differ-
ential equation—including the piecewise-defined forcing term. Although we
recognize this as the function we have already dealt with, it is important to
stress the steps we need to get. We need to first rewrite the piecewise-defined
function g(t) in terms of Heaviside functions. We have

g(t) = (1− u1(t))t+ (u1(t)− u2(t))(2− t)
= t+ 2u1(t)(1− t) + u2(t)(t− 2).

The equation we must take the Laplace transform of, therefore, is

d2x

dt2
+ 2

dx

dt
+ 2x(t) = t+ 2u1(t)(1− t) + u2(t)(t− 2).

The Laplace transform gives

[s2X(s)− sx(0)− x′(0)] + 2[sX(s)− x(0)] + 2X(s) =
1

s2
(
1− 2e−s + e−2s

)
=⇒ (s2 + 2s+ 2)X(s) =

1

s2
(
1− 2e−s + e−2s

)
=⇒ X(s) =

1

s2(s2 + 2s+ 2)

(
1− 2e−s + e−2s

)
.
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We can break this solution into smaller parts so that X(s) = X1(s) +
X2(s) +X3(s) where

X1(s) = H(s)

X2(s) = −2H(s)e−s

X3(s) = H(s)e−2s

and

H(s) =
1

s2(s2 + 2s2 + 2)
.

We now want to invert the transformation to get a solution written in terms
of Heaviside functions.

Written as above, we recognize that each portion of the solution depends
upon the function H(s) (and eventually, it’s inverse Laplace transform form)
so we will need to perform partial fraction decomposition. We have

1

s2(s2 + 2s+ 2)
=
A

s
+
B

s2
+

Cs+D

s2 + 2s+ 2

=⇒ 1 = As(s2 + 2s+ 2) +B(s2 + 2s+ 2) + (Cs+D)s2

=⇒ 1 = (A+ C)s3 + (2A+B +D)s2 + (2A+ 2B)s+ 2B.

This gives rise to the system of equations

A+ C = 0

2A+B +D = 0

2A+ 2B = 0

2B = 1

which can be solved one variable at a time to get A = −1/2, B = 1/2,
C = 1/2, and D = 1/2. It follows that we have

H(s) =
1

2

(
−1

s
+

1

s2
+

s+ 1

s2 + 2s+ 2

)
.

Notice now that Theorem 3.1 implies that L−1 {X1(s)}, L−1 {X2(s)}, and
L−1 {X3(s)} all depend upon L−1 {H(s)} but with a shift in t. At any rate,
we would like to evaluate L−1 {H(s)}, which requires completing the square
in the denominator. We have

s2 + 2s+ 2 = s2 + 2s+ 1 + 1 = (s+ 1)2 + 1.
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It follows that we have

h(t) = L−1
{

1

2

(
−1

s
+

1

s2
+

s+ 1

s2 + 2s+ 2

)}
= L−1

{
1

2

(
−1

s
+

1

s2
+

s+ 1

(s+ 1)2 + 1

)}
=

1

2

(
−1 + t+ e−t cos(t)

)
.

Returning to our original equation now, we have

x(t) = L−1 {X(s)}
= L−1 {X1(s)}+ L−1 {X2(s)}+ L−1 {X3(s)}
= L−1 {H(s)} − 2L−1

{
H(s)e−s

}
+ L−1

{
H(s)e−2s

}
= h(t)− 2u1(t)h(t− 1) + u2(t)h(t− 2)

(3)

where h(t) is as above.
It is not easy to see from this form exactly what is happening, but

computer software packages make it extremely transparent (see Figure 2
and 3). We can see that the solution is initially at rest but is eventually set
in motion by the escalating forcing term. The forcing term begins descending
at t = 1, just as the solution is gaining some speed. Once the forcing term
is removed at time t = 2, the now displaced pendulum/spring is free to
settle back into its natural rhythm. In this case, it will settle into damped
oscillations, since the unforce system has the solution form

x(t) = C1e
−t cos(t) + C2e

−t sin(t).

To make the example more practical, we could imagine a pendulum hang-
ing in its equilibrium position which is suddenly displaced by an escalating
gust of wind. The wind will blow the pendulum toward the side, picking up
speed along the way, until the air is still again and the pendulum is free to
swing back to its equilibrium position.
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Figure 2: Plot of the solution x(t) given by (3).

Figure 3: Plot of the piecewise-defined forcing function g(t) given by (2).
Notice that the solution picks up speed when the forcing is ascending (0 ≤
t < 1) and then slows down when the forcing is scaled back (1 ≤ t < 2).
When the forcing is no longer present (t ≥ 0), the solution returns to its
equilibrium position.
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