
MATH 319, WEEK 12:
Crash Course in Linear Algebra

1 Linear Algebra

Throughout the remainder of the course, we will be dealing with systems of
first-order differential equations. But how do we represent these equations?
Do we really have to write them out individually each time we want to refer
to them? That seems absurd, and yet it is all we have at our disposal at the
moment. What else can we do?

The answer comes from the discipline of linear algebra. What we need
to do is define a few new of objects, called matrices and vectors, and de-
scribe how they interact. Buried inside these objects will be the individual
quantities (e.g. variables, functions, derivatives, etc.) which we have been
interested in up to this point in the course.

The advantage of briefly introducing linear algebra now is two-fold:

1. It will allow us to condense expressions in a way which will make a
first-order system of differential equations analogous to the first-order
differential equations studied in the first 5-6 weeks of the course.

2. Theoretical results from linear algebra will be essential in deriving
solutions to all but the simplest of such systems.

That said, linear algebra is not a primary topic of Math 319. We will
introduce only the topics which are necessary for our study, and for theo-
retical and computational simplicity, will limit ourselves to two-dimensional
systems. (The interested student is directed to Math 320 and/or Math 340
for a fuller introduction.)

2 Matrices and Vectors

The basic objects of study in linear algebra are matrices and vectors, which
we will (usually) consider to be over the real numbers R.
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Definition 2.1. A matrix A ∈ Rm×n is defined to be

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


where aij ∈ R for all i = 1, . . . ,m and j = 1, . . . , n. A vector v ∈ Rm is
defined to be

v = (v1, v2, . . . , vm)

where vi ∈ R for all i = 1, . . . ,m.

There are a few notes worth making about these objects:

• A matrix can be thought of as a rectangular grid of numbers. For
example, we might have

A =

[
2 0 −1 0
1 1

2 6 −2

]
or

B =

[
1 0
0 1

]
.

• It is important to note that, for each matrix entry aij , the first index
i corresponds to the row while the second index j corresponds to the
column. This is standard across all disciplines which use linear algebra
(which is a lot!).

• Matrices will be denoted with capital letters (usually) in alphabetical
order. That is to say, if we have multiple matrices in a problem, we
will denote them by A, B, C, and so on.

• Vectors will alternatively be denoted by bold-faced (e.g. v) or with an
arrow overtop (e.g. ~v). Bold-faced will be favored in the online notes
while the arrow notation will be favored in class.

• A vector can be thought of as a matrix with either one row (a row
vector) or one column (a column vector). For example, if we have

v = [ 2 3 ], w =

[
2
3

]
then v is a row vector, and w is a column vector.
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• Addition and scalar multiplication of matrices (and vectors) is defined
component-wise. That is to say, if we have

A =

[
1 2
−3 1

]
and B =

[
0 −1
1 2

]
then we have

A+ 2B =

[
1 2
−3 1

]
+ 2

[
0 −1
1 2

]
=

[
1 + 2(0) 2 + 2(−1)
−3 + 2(1) 1 + 2(2)

]
=

[
1 0
−1 5

]
.

3 Multiplication

We will also need to define multiplication for matrices. This is the first opera-
tion which is not as intuitive as applying the standard operation component-
wise to the relevant matrices. Rather, we have the following definition.

Definition 3.1. Suppose A ∈ Rm×p and B ∈ Rp×n. Then the matrix
C = AB ∈ Rm×n is defined to be the matrix with entries

cij =

p∑
k=1

aikbkj .

Alternatively, we may think of matrix multiplication as consisting of
multiplying rows of the first matrix component-wise with columns of the
second, and then adding the results. The result of this operation is then
placed in the row and column of the new matrix corresponding to the row
and column which were just multiplied together. For example, for the A
and B just defined, we have

AB =

[
1 2
−3 1

] [
0 −1
1 2

]
=

[
(1)(0) + (2)(1) (1)(−1) + (2)(2)

(−3)(0) + (1)(1) (−3)(−1) + (1)(2)

]
=

[
2 3
1 5

]
.

Note: There are two technicalities that arise out of this definition of
matrix multiplication:
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1. The operation is only defined if the first matrix has exactly the same
number of columns as the second matrix has rows. For many matrices
the product AB is not even defined!

2. Even if the operation is defined, it is not generally the case that AB =
BA (check with the previous example!). In other words, order matters.
This is a significant distinction with multiplication of real numbers
where x · y = y · x trivially, and will be easy to forget.

4 2× 2 Inverses

A particularly important matrix is the identity matrix, which for 2× 2 sys-
tems is defined as I ∈ R2×2 where

I =

[
1 0
0 1

]
.

This matrix has the property that AI = A and IA = A for any matrix for
which the multiplication is defined. Consequently, in the theory of linear
algebra, the identity matrix can be thought of as be analogous to the value
one in standard algebra.

An interesting question is whether, given a square matrix A, we can find
a matrix which multiplies to give the identity matrix. That is to say, can be
find a matrix B such that

AB = I.

There are numerous reasons we might want to do this, but we will not go
into any significant detail here. (We may think of it as defining division for
matrices, since it will allow us to move matrices from one side of an equation
to the other.)

The following matrix accomplishes this task.

Definition 4.1. Consider a matrix A ∈ R2×2 defined by

A =

[
a b
c d

]
.

Then the inverse matrix A−1 ∈ R2×2 is defined by

A−1 =
1

ad− bc

[
d −b
−c a

]
and has the property that A−1A = AA−1 = I.
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The 2 × 2 inverse matrix A−1 has many nice properties. Most notably,
it is guaranteed to be an inverse on the right and on the left (A−1A = I
implies AA−1 = I, and vice versa), and it is unique (i.e. given a matrix A
there exactly one matrix satisfying A−1A = AA−1 = I). That the given
matrix satisfies A−1A = I and AA−1 = I can be verified directly.

An immediate consequence of this formula is that not every matrix has
an inverse (i.e. not all matrices are invertible). This follows from the fact
that ad − bc may be zero, in which case the formula tells us to divide by
zero. (This could have been anticipated by our interpretation of inverses as
the matrix analogue of division!) This quantity is important enough in the
theory of linear algebra that it is given its own name.

Definition 4.2. The determinant of a matrix A ∈ R2×2 is defined by

det(A) =

∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.

Many properties follow from the value of the determinant, but the one
which is more readily apparent (and frequently used!) is that a matrix is
invertible if and only if det(A) 6= 0.

Example: Determine whether the following matrices are invertible and,
if so, find the inverse:

A =

[
2 −5
1 −3

]
and B =

[
2 −1
−4 2

]
.

Solution: We can simply apply the formula. We first need to compute
the determinants. We have

det(A) = 2(−3)− (−5)(1) = −6 + 5 = −1

and
det(B) = 2(2)− (−1)(−4) = 4− 4 = 0.

It follows that A is invertible and B is not. The inverse of A, A−1 can be
computed by the formula as

A−1 =
1

ad− bc

[
d −b
−c a

]
=

1

−1

[
−3 5
−1 2

]
=

[
3 −5
1 −2

]
.

We can easily verify this is correct by computing

A−1A =

[
3 −5
1 −2

] [
2 −5
1 −3

]
=

[
1 0
0 1

]
= I.
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5 Eigenvalues and Eigenvectors

We now introduce the following a pair of objects which will be the primary
focus of our application of linear algebra to systems of differential equations.

Definition 5.1. Consider a matrix A ∈ R2×2. Then a vector v ∈ C2

satisfying the equation
Av = λv (1)

for some λ ∈ C is called an eigenvector of A, and the value λ is the
corresponding eigenvalue.

What is important to note about equation (1) is that the relationship
Av always produces a vector (i.e. a 2×1 matrix) but that this vector usually
has nothing very much to do with the original vector v. That is to say, if we
picked a 2× 2 matrix and a vector v at random, we would not expect to see
much similarity between v and the vector produced by Av. For instance, if
we pick the matrix A and vector v to be

A =

[
2 0
2 1

]
and v =

[
1
1

]
we compute

Av =

[
2 0
2 1

] [
1
1

]
=

[
2
3

]
.

As we expected, this has produced another vector, but the vector it has
produced has very little resemblance to the vector we started with, v =
(1, 1).

It is sometimes the case, however, for very carefully selected vectors,
computing Av produces a vector which differs from v by only a constant
value (a scaling in the (x, y)-plane). In some sense, the operation implied
by A on the vector v does not change the affect the vector. Such a pair is
called an eigenvalue/eigenvector pair. For example, if we choose the vector
v = (1, 2) with the above matrix A, we have

Av =

[
2 0
2 1

] [
1
2

]
=

[
2
4

]
= 2

[
1
2

]
.

We will say that v = (1, 2) is an eigenvector of A with eigenvalue λ = 2.
This property may not seem like a big deal, but it turns out that, for

many applications, determining the set of eigenvectors v and corresponding
eigenvalues λ of a matrix A is sufficient to tell us everything we need to
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know about what A does, has ever done, and will ever do. These vectors
are the key to unlocking the behavior of matrices in a wide various contexts.
(The full extent of these details will unfortunately not be presented in this
course. A more detailed treatment is given in Math 340.)

The question then becomes: How do we find eigenvalues and eigenvec-
tors? How did I know to choose the vector v = (1, 2)? Was it just a lucky
guess? If they are so important, we should be able to do better than just
guess what they are!

It is fortunate that there is a way to determine the eigenvalues and
eigenvectors of any matrix. The argument, however, depends slightly on
linear algebra that is beyond what has been presented in this write-up. We
should nevertheless be able to apply the steps. What we need to realize is
that we can write the eigenvector equation (1) as

Av = λIv =⇒ Av − λIv = 0 =⇒ (A− λI)v = 0. (2)

We are allowed to do this because the identity matrix does not alter a matrix
(or vector) upon multiplication so that v = Iv.

The resulting matrix on the left-hand side is A−λI, which is the matrix
A with λ subtracted from the diagonal. It is a basic fact of linear algebra
(but unfortunately not one we will be able to justify in this course) that a
matrix can satisfy the equation Av = 0 for a non-trivial vector v if and only
if its determinant is zero. That is to say, the equation (2) can be true if and
only if

det(A− λI) = 0. (3)

So far, all the arguments we have made apply to a general square matrix
A. Now consider the general 2× 2 matrix

A =

[
a b
c d

]
.

We can now clearly see that

A− λI =

[
a− λ b
c d− λ

]
.

It follows that det(A− λI) = 0 implies

(a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ (ad− bc) = 0. (4)

This equation is called the characteristic polynomial of the matrix A. It
is easy to generalize to higher dimensions, but the form of the equation is
more difficult to write down in general.
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What is important to note is that (4) is a quadratic expression in the
eigenvalues λ. It follows that we can determine the eigenvalues of the matrix
by solving this quadratic! If we wanted to be explicit about it, we could write

λ =
(a+ d)±

√
(a+ d)2 − 4(ad− bc)

2
.

It will generally be easier to solve this quadratic on a case-by-case basis than
remember this formula.

It is worth noticing, however, that this expression tells us a great deal
about the general nature of eigenvalues (and eigenvectors by association).
In particular, a 2 × 2 matrix may only have two eigenvalues, and there
are three distinct cases they may fall into, which depends on the sign of
(a+ d)2 − 4(ad− bc):

1. There are two real-valued and distinct eigenvalues (say, λ1 and λ2).

2. There is one repeated real-valued eigenvalue (say, λ).

3. There is a complex-valued conjugate pair of eigenvalues (say, λ1,2 =
α± βi).

Given an eigenvalue, it remains to find the associated eigenvector v =
(v1, v2). In this case, we need only return to (2). Now that we have the
eigenvalue λ, we can solve the expression

(A− λI)v = 0

for the vector v! The details of this operation are perhaps best left to an
examples. (The required actions will be slighly different depending on the
which case we are in for the eigenvalues.)

Example 1: Find the eigenvalues and eigenvectors of the matrix

A =

[
2 0
2 1

]
.

Solution: To compute the eigenvalues, we need to solve

det(A− λI) =

∣∣∣∣ 2− λ 0
2 1− λ

∣∣∣∣
= (2− λ)(1− λ)− (2)(0)

= (2− λ)(1− λ) = 0.
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It is clear that we have two distinct real-valued roots, λ1 = 1 and λ2 = 2.
Substituting the first value in the expression (A − I)v = 0 to find the
corresponding eigenvector gives[

1 0
2 0

] [
v1
v2

]
=

[
0
0

]
where we are trying to solve for v1 and v2. An expression like this is called
a linear system of equations. They are commonly rewritten in the form[

1 0 0
2 0 0

]
.

The question becomes how to solve such systems of equations. It turns
(details omitted) that we are allowed perform the following three operations
without changing the value of the solution, v1 and v2:

1. Multiply rows by scalar values.

2. Add rows.

3. Switch the order of rows.

What we want to do is use these operations to rearrange this matrix expres-
sion into a form satisfying the following two objectives:

1. The first non-zero entry in each row is a 1.

2. The first non-zero entry in each successive row is further to the right
than the previous row.

Such a matrix is said to be in echelon form.
For our example (and the vast majority we will see), the method for

obtaining this form will be obvious. In this case, we are almost there, since
the first row begins with a 1. The only thing we need to worry about is the
2 in the second row. We need to remove it, because we are not permit to
have any entry in that column by condition 2 above. We can remove it by
taking the second row and subtracting two of the first row from it. We have

R̃2=R2−2R1−→
[

1 0 0
0 0 0

]
.

There are no further operations to perform. We recognize now that this
corresponds to the system of equations[

1 0
0 0

] [
v1
v2

]
=

[
0
0

]
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which can be expanded into

(1)v1 + (0)v2 = 0 =⇒ v1 = 0

(0)v1 + (0)v2 = 0 =⇒ 0 = 0.

The second equation is trivially satisfied while the first places a restriction
on v1. It follows that the system can be satisfied for any choice of v1 = 0
and v2 = t where t ∈ R. That is to say, the vectors we are looking for are[

v1
v2

]
= t

[
0
1

]
.

Choosing t = 1 (a convenient choice, but any value will do), we obtain
v1 = (0, 1).

Now consider λ2 = 2. We have

(A− 2I)v = 0 =⇒
[

0 0
2 −1

] [
v1
v2

]
=

[
0
0

]
.

We put this in the condensed matrix form and solve to get[
0 0 0
2 −1 0

]
R̃1=(1/2)R2−→

[
1 −(1/2) 0
0 0 0

]
.

It follows that we have the system

v1 − (1/2)v2 = 0

0 = 0.

The second equation (again) is meaningless. This will be a general property
of the eigenvector system we will have to solve. This can be satisfied if and
only if v1 = (1/2)v2 which can be parameterized as v1 = (1/2)t and v2 = t
for t ∈ R. It follows that we have[

v1
v2

]
= t

[
1/2
1

]
.

Choosing the value t = 2 (an easy choice), we obtain the vector v2 = (1, 2).
This corresponds to the earlier eigenvector which we confirmed was associ-
ated with the eigenvalue λ = 2 by direct computation, and we are done!

Example 2: Find the eigenvalues and eigenvectors of the matrix

A =

[
−4 −1
4 0

]
.
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Solution: We have

det(A− λI) =

∣∣∣∣ −4− λ −1
4 −λ

∣∣∣∣
= (−4− λ)(−λ) + 4

= λ2 + 4λ+ 4 = (λ+ 2)2 = 0.

We do not even need to use the quadratic formula to determine that λ =
−2. We notice that there is something distinctively different about this
example since we have only found one eigenvalue instead of the typical two.
Nevertheless, we can proceed as before and compute

(A− 2I) = 0 =⇒
[
−4− (−2) −1 0

4 −(−2) 0

]
−→

[
−2 −1 0
4 2 0

]
−→

[
1 1

2 0
0 0 0

]
.

This corresponds to v1 + (1/2)v2 = 0. Setting v2 = t = 2 (to clear the
denominator) gives us the eigenvector v = (−1, 2).

Something is very different about this example. We have obtained an
eigenvector, but only one, and since there are no further eigenvalues to
use, this appears to be the end of the discussion. For the applications
involving differential equations, however, we will need to have a full set of
eigenvectors—in this case, we will need two of them. But if we are not
looking for eigenvectors as we have defined them, what are we looking for?

The answer is contained in the following definition.

Definition 5.2. A vector w ∈ R2 is called a generalized eigenvector of
A ∈ R2×2 if it satisfies

(A− λI)2w = 0 but (A− λI)w 6= 0.

It is not immediately obvious how this new vector helps us (and the
rigorous justification is beyond the scope of the course), but it is known that
generalized eigenvectors only exist (and exist in exactly the right number!)
when there is a repeated eigenvalue λ ∈ R. It can also be checked that this
equation is equivalent to the far more useful

(A− λI)w = v (5)
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where v ∈ R2 is the standard eigenvector corresponding to the eigenvalue
λ ∈ R.

Returning to our example, we want to find a generalized eigenvector w
by using the equation (A− λI)w = v where v = (−1, 2). We have

(A− 2I)w = v =⇒
[
−2 −1 −1
4 2 2

]
−→

[
1 1

2
1
2

0 0 0

]
.

This corresponds to the system w1 + (1/2)w2 = (1/2). Setting w2 = t
gives w1 = (1/2) − (1/2)t. Picking t = 1 (to clear the denominators) gives
w = (w1, w2) = (0, 1). So, corresponding to the repeated eigenvalue λ = 2,
we have the regular eigenvector v = (−1, 2) and the generalized eigenvector
w = (0, 1).

Example 3: Find the eigenvalues and eigenvectors of the matrix

A =

[
3 −1
5 −1

]
.

Solution: We need to compute

det(A− λI) =

∣∣∣∣ 3− λ −1
5 −1− λ

∣∣∣∣
= (3− λ)(−1− λ) + 5

= λ2 − 2λ+ 2 = 0

=⇒ λ =
2±
√

4− 8

2
= 1± i.

This is quite a bit different than what we have seen so far, but the same
principles will apply for complex-valued eigenvalues. We now want to use
the formula (A− λI)v = 0 to find complex-value eigenvectors.

It turns out that, for complex conjugate eigenvalues, we may pick either
sign in the eigenvalue to determine the eigenvector, and the eigenvector
corresponding to the eigenvalue with the other sign will be the conjugate of
the eigenvector found. This will save some work (but at the cost of having
to deal with complex values)!
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For λ = 1 + i we have

(A− (1 + i) I) v = 0 =⇒
[

3− (1 + i) −1 0
5 −1− (1 + i) 0

]
−→

[
2− i −1 0

5 −2− i 0

]
−→

[
(2− i) (2 + i) −(2 + i) 0

5 −2− i 0

]
−→

[
5 −2− i 0
5 −2− i 0

]
−→

[
1 −2

5 −
1
5 i 0

0 0 0

]
This process may seem a little mysterious at first glance, but it will become
very familiar—it will work for every 2× 2 matrix with complex eigenvalues!
What we want to recognize is that:

1. The eigenvector equation guarantees that we absolutely must be able
to row reduce the condensed matrix so that there is a row of zeroes.
That means there is necessarily some combination of the two rows
which adds to zero. (That combination, however, involves complex
numbers.)

2. Multiplying a complex number by its conjugate (e.g. for λ = α + βi,
the value λ̄ = α−βi is the conjugate) always produces a real number.

It follows that we just need to match up the real and complex numbers in
the columns of the condensed matrix, which is what we have done above.
The rest follows as if we had a real-valued matrix!

The final equation is equivalent to v1 − ((2/5) + (1/5)i)v2 = 0. Setting
v2 = t, we have v1 = ((2/5) + (1/5)i)t. Writing in vector form, and then
taking t = 5, it follows that we have the complex eigenvector

v =

[
2 + i

5

]
=

([
2
5

]
+

[
1
0

]
· i
)
.

The importance of what we have done is that we have obtained two
vectors, corresponding to the real and imagine parts of v—specifically, a =
(2, 5) and b = (1, 0). These are the two distinct vectors we will need when
we return to considering differential equations!
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It can be checked that choosing the eigenvalue λ = 1 − i would have
received the complex eigenvector

v =

([
2
5

]
−
[

1
0

]
· i
)
.

In particular, notice that we have the same real-valued vectors we identified
before—a = (2, 5) and b = (1, 0).

14


