
MATH 319, WEEKS 13 & 14:
First-Order Systems of Differential

Equations

1 Motivating Example

A few months ago, we imagined a mathematical model for the chemical
reaction X → Y subject to continuous inflow and outflow of X and Y . If
we let the concentrations of X and Y be denoted x = [X] and y = [Y ], and
made some numerical simplifications, we imagined we could arrive at the
following differential equation model:

dx

dt
= 1− x

dy

dt
= 1 + x− 2y

x(0) = 0, y(0) = 1.

(1)

Without dwelling too long on the physical motivation, we can image the
positive terms as contributing to an increase in the amount of the associ-
ated variable, and the negative terms corresponding to a decrease in the
corresponding amounts.

Although we did not classify it as such at the time, this is an example of
a first-order linear system of differential equations, which is the final topic
of the course. Before we explicitly state our objectives and methods for this
topic area, there are a few things worth noting about this specific model:

• Even though there are two functions, x(t) and y(t), we can check
solutions in exactly the same way as before—by evaluating on the
left-hand and right-hand sides of th equations. For this example, we
can easily check that x(t) = 1 − e−t and y(t) = 1 − e−t + e−2t is a
solution because x(0) = 1 − e−(0) = 0, y(0) = 1 − e−(0) + e−2(0) = 1,
and

dx

dt
=

d

dt

[
1− e−t

]
= e−t = 1− [1− e−t] = 1− x(t)
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and

dy

dt
=

d

dt

[
1− e−t + e−2t

]
= e−t − 2e−2t

= 1 + [1− e−t]− 2[1− e−t + e−2t]

= 1 + x(t)− 2y(t).

• Systems of differential equations can be classified in the same way as
we classified single differential equations. This system is first-order
because the highest derivative (of either x or y!) is first-order, and it
is linear because all the terms we are solving for and their derivatives
(i.e. x, y, x′, and y′) appear isolated from one another. It is also
nonhomogeneous because not every term involves an x, a y, or one of
their derivatives (due to the additional constant “1”s which appear in
both equations).

• We were able to solve this system at the time by noticing that the
first equation depended on x only, and not y, and consequently we
could solve for x(t) before consider y(t). This is not a general prop-
erty of systems of differential equations! In general, the variables are
interdependent—that is to say, the equation for x′ depends on x and
y, and the equation for y′ depends on x and y as well.

2 Conversion to First-Order Systems

Consider the general first-order system

dx1
dt

= f1(t, x1, x2, . . . , xn)

dx2
dt

= f2(t, x1, x2, . . . , xn)

...

dxn
dt

= fn(t, x1, x2, . . . , xn).

(2)

There are many nice properties of first-order systems but the main two are
the following:

1. So long as the functions on the right-hand side are well-behaved (linear,
homogeneous, etc.), there will be general techniques for obtaining a
solution.
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2. The forward Euler and Runge-Kutta methods for numerical solutions
can be immediately extended to first-order systems, so that numeri-
cally approximating solutions of differential equations in the form (2)
is extremely straight-forward. (Note that this was not true for even
second-order differential equations! Having only first-order derivatives
is the key.)

The reasons we study first-order systems, however, goes far deeper than
physical systems which can be directly written in the form (2). It turns out
that almost every differential equations, regardless of order, can be written
as a first-order system of differential equations with an appropriate introduc-
tion of variables. That is to say, in order to understand ordinary differential
equations in general, it is (in almost all cases) sufficient to simply understand
the form (2)!

This might be surprising, but the argument is actually straight-forward.
It is also a procedure we will repeat throughout the remainder of this course
(and likely in any subsequent courses involving ordinary differential equa-
tions!) so we will want to understand what is happening. We have the
following steps:

• Consider a general nth order differential equation written in the form

x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)). (3)

In other words, isolate the highest-order derivative.

• Make the variable substitutions x1(t) = x(t), x2(t) = x′(t), x3(t) =
x′′(t), . . ., xn(t) = x(n−1)(t). In other words, assign a new variable to
everything except the highest-order derivative.

• Notice that we have x′1(x) = x2(t), x
′
2(t) = x3(t), . . . by construction.

In general, we have x′i(t) = xi+1 for i = 1, . . . , n− 1.

• Notice that this only works for the first n − 1 variables. For the nth

equation must return to the original system. We notice that (3) implies
x′n(t) = f(t, x1(t), x2(t), . . . , xn(t)).

• The system of first-order differential equations corresponding to (3) is

x′1 = x2

x′2 = x3
...

x′n−1 = xn

x′n = f(t, x1, x2, . . . , xn).

(4)
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• The initial conditions x(t0) = b1, x
′(t0) = b2, . . ., x

(n−1)(t0) = bn
become

x1(t0) = b1, x2(t0) = b2, . . . , xn(t0) = bn.

Example 1: Rewrite the initial value problem

x′′(t) + 4x′(t) + 4x(t) = sin(2t) (5)

x(0) = 5, x′(0) = −1 (6)

as an initial value problem for a system of first-order differential equations.

Solution: We make the substitutions x1(t) = x(t) and x2(t) = x′(t).
This gives the relationship x′1(t) = x2(t). In order to find an equation for
x′2(t) we need to rewrite (7) in the form

x′′(t) = sin(2t)− 4x′(t)− 4x(t).

We can see that this corresponds to the required form x′′(t) = f(t, x(t), x′(t))
which becomes x′2(t) = f(t, x1(t), x2(t)). The desired system of first-order
differential equations is therefore

x′1 = x2

x′2 = 4x1 − 4x2 + sin(2t)

and the initial conditions x(0) = 5 and x′(0) = −1 become

x1(0) = 5, x2(0) = −1.

We have successfully transformed the original second-order differential equa-
tion into a system of two first-order differential equations!

Example 2: Rewrite the initial value problem

x′′′(t)− x′(t)x(t) = 0 (7)

x(0) = 1, x′(0) = 0, x(0) = 0 (8)

as an initial value problem for a system of first-order differential equations.

Solution: We follow the exact same procedure, but notice we have to
assign three variables since this is a third-order differential equations. We
set x1(t) = x(t), x2(t) = x′(t) and x3(t) = x′′(t). It immediately follows
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that x′1(t) = x2(t) and x′2(t) = x3(t). It only remains to obtain a differ-
ential equations for x′3(t) = x′′′(t). To obtain this, we rewrite the original
differential equation as

x′′′(t) = x′(t)x(t) = x2(t)x1(t).

It follows that our system of first-order differential equations is

x′1 = x2

x′2 = x3

x′3 = x1x2

with initial conditions

x1(0) = 1, x2(0) = 0, x3(0) = 0.

While this process may not seem like much, it is the first step toward
defining a general methodology for studying differential equations for very
complicated systems! We should make a few quick notes:

• Notice that the order of the original system (3) corresponds to the
number of variables in (4). This is a general property, which even
generalized to systems of higher-order differential equations. For in-
stance, if we have two differential equations, say a 3rd and a 5th order
equation, respectively, then we can write this system as an equivalent
first-order system in eight variables.

• Initial value problem for the system formulation (4) makes more in-
tuitive sense than the original set-up (3). We could physically moti-
vate why second-order systems required two initial conditions, but the
mathematics was a little vague. Now it is clear! We have two initial
conditions because there are two fundamental variables we need to
specify.

• The first-order system formulation lends itself to very nice geometric
tools. This is because the first-order derivative is very easy to interpret
graphically—it is the slope of the solution function at the given point.
We just need to draw a line pointed in an approriate direction. So,
if we formulate higher-order differential equations as systems of first-
order differential equations, we will be able to (easily!) draw pictures.
(This is very strong analogue with the first-order systems at the start
of the course, where we always tried to reconcile our algebraic results
with some sketch.)
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3 First-Order Linear Homogeneous Systems of Dif-
ferential Equations in Two Variables

We start by considering systems of two linear, first-order homogeneous dif-
ferential equations with constant coefficients:

dx

dt
= ax+ by

dy

dt
= cx+ dy.

(9)

Before considering how we might find an analytic solution (x(t), y(t)) to
such a system, let’s first ask a more basic question: What can a system like
this do? Let’s consider this question for a geometrical point of view; in other
words, let’s try to draw a picture. We make the following observations:

• The system is first-order so that, at every point (x0, y0) in the (x, y)-
plane we know whether the solution through the point (x0, y0) is
pointed right or left (x′(t) > 0 or x′(t) < 0) or up or down (y′(t) > 0
or y′(t) < 0).

• We know the equation x′(t) = 0 corresponds to ax + by = 0 or y =
−(a/b)x and y′(t) = 0 corresponds to y = −(c/d)x. In other words, we
know exactly where the solution (x(t), y(t)) is completely flat (y′(t) =
0) or completely vertical (x′(t) = 0).

Example 1: Consider the system of differential equations

dx

dt
= −x+ 3y

dy

dt
= 3x− y.

We can easily determine that

dx

dt
= 0 =⇒ y =

1

3
x

and
dy

dt
= 0 =⇒ y = 3x.

The question then becomes what happens in the regions between these two
lines. It should not take too much convincing that, if we only consider ar-
rows pointing in the dominant directions (NW, NE, SW, SE, say) that we
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arrive at the picture given by Figure 1(a).

Example 2: Consider the system of differential equations

dx

dt
= −x+ 5y

dy

dt
= −2x+ y.

We can easily determine that x′ = 0 implies y = (1/5)x, and that y′ = 0
implies y = 2x. When we consider the orthants, we end up with a picture
that looks something like Figure 1(b).

x

y

x

y
(a) (b)

y'=0

x'=0

y'=0

x'=0

Figure 1: A rough sketch of the two example systems. Even without solving
the equations, we can get some sense about how the solutions behave!

Without even attempting to solve the system of differential equations,
we can tell very important things about the types of behaviors we might
encounter. It looks like the solutions of the first system originate somewhere
in the top-left or bottom-right, pool together, then travel toward either the
top-right or the bottom-left. Solutions of the second system, by contrast,
appear to spiral around (0, 0), although it is unclear whether they approach
(0, 0) or drift away.
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4 General solutions to Linear Systems in Two Vari-
ables

In order to investigate how we might find a solution to these systems, or
a general system such as (9), let’s make an observation about the form of
the equation. Notice that the right-hand side can be written in a condensed
form by appealling to matrix multiplication. In particular, we can write the
system (9) as

dx

dt
= Ax (10)

where

dx

dt
=


dx

dt
dy

dt

 , A =

[
a b
c d

]
, and x =

[
x
y

]
.

This form suggests immediately that results from linear algebra will be rel-
evant for solving systems of differential equations. In fact, this intuition is
completely justified, and we will see that we already have all of the tools
needed to completely solve systems of DEs of the form (10)!

Before we get there, however, let’s try to build some intuition. The first
order equation (10) is a vector/matrix equation, but it looks eerily similar
to the first order equation

dx

dt
= ax

which we know has solution x(t) = Ceat. The question then becomes, can we
extend our standard algebra result by substituting matrix algebra instead?
What are the terms going to be? Can we write eAt for a matrix A? (We
can, but won’t attempt to do this, at least not yet.) Is there some other way
we can extend the solution x(t) to the vector solution x(t)?

Consider the following set-up. We guess a solution x(t) with the general
exponential form eat, but we allow the components of x(t) to vary according
to some constant vector. In other words, we write x(t) = veλt for some
λ ∈ R. This keeps the general intuition that the solution is exponential
while allowing that each equation may be slightly different.

Now let’s check the matrix equation (10)! We have

dx

dt
=

d

dt
[veλt] = [λv]eλt

and
Ax = A[veλt] = [Av]eλt.
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It follows that we need

dx

dt
= Ax =⇒ [λv]eλt = [Av]eλt.

After dividing by eλt (which is never zero) and rearranging, we have

Av = λv.

If you get the sense that we have seen this equation before, it is because
we have. This is exactly the eigenvalue/eigenvector equation for the matrix
A. In this context of differential equations, this tells us that eigenvalues λ1,2
and corresponding eigenvectors v1,2 give us solutions to (10) of the form
x1(t) = v1e

λ1t and x2(t) = v2e
λ2t. With a little bit of work, we should be

able to convince ourselves that any solution of the form

x(t) = C1v1e
λ1t + C2v2e

λ2t

will also satisfy the differential equation. In other words, we may construct
the general solution out of individual solutions! This is the same trick we
employed for second-order linear differential equations.

Example 1: Find the general solution to the first order system of dif-
ferential equations

dx

dt
= −x+ 3y

dy

dt
= 3x− y.

Solution: Notice that we have

dx

dt
= Ax, with A =

[
−1 3
3 −1

]
.

We can quickly compute that the eigenvalues are given by (−1 − λ)(−1 −
λ) − 9 = λ2 + 2λ − 8 = (λ + 4)(λ − 2) = 0 so that λ1 = −4 and λ2 = 2.
The corresponding eigenvectors are v1 = (1,−1) and v2 = (1, 1). It follows
that we have two solutions of the form x1(t) = v1e

λ1t and x2(t) = v2e
λ2t.

It follows that the general solution is[
x(t)
y(t)

]
= C1

[
1
−1

]
e−4t + C2

[
1
1

]
e2t.
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Remarkably, knowing how to compute eigenvalues and eigenvectors com-
pletely solves the problem! We also get to complete our earlier picture.
Since C1(1,−1)e−4t → 0 as t→∞, we have that the solution gets closer to
C2(1, 1)e2t as time goes on. In other words, solution approach the direction
of the vector (1, 1). We can quickly confirm that this is where the arrows
pointed in the picture in Figure 1(a).

Of course, things are not always quite so easy. There are three basic
cases for eigenvalues: distinct real eigenvalues, repeated eigenvalues, and
complex eigenvalues. The solution forms for the latter two cases differ from
what we have just obtained. But we already have the tools for resolving
these cases! If we have a repeated eigenvalue, then we do not get a full set
of eigenvectors and so do not get a full set of solutions. But we have already
seen how to generate further independent solutions—we just add a factor
or t! Similarly, if we encounter complex eigenvalues λ = α ± βi, we must
take a particular combination of complex-valued solutions to get real-valued
solutions in terms of eαt sin(βt) and eαt cos(βt).

In any case, the solution for the 2× 2 differential equation cases can be
completely determined by the eigenvalues and eigenvectors in the following
way:

1. Two real distinct eigenvalues (or a repeated eigenvalue with
two distinct eigenvectors) - If we have two distinct eigenvalues λ1
and λ2 corresponding to v1 and v2, respectively, the solution to (10)
is given by

x(t) = C1v1e
λ1t + C2v2e

λ2t.

Similarly, if there is a repeated eigenvalue (λ = λ1 = λ2) but two
linearly independent eigenvectors v1 and v2, we have

x(t) = eλt (C1v1 + C2v2) .

2. Repeated eigenvalue, one eigenvector - If we have a repeated
eigenvalue λ = λ1 = λ2 but only one eigenvector v ∈ R2, we have the
general solution

x(t) = (C1v + C2(tv + w))eλt

where w ∈ R2 is a generalized eigenvector satisfying

(A− λI)w = v.
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3. Complex eigenvalues - If we have a complex eigenvalue λ = α+ iβ
corresponding to a complex eigenvector v = a + ib then the general
solution is given by

x(t) = C1e
αt (a cos(βt)− b sin(βt))

+ C2e
αt (a sin(βt) + b cos(βt)) .

There are a few notes worth making about these solutions:

1. It is clear that exponentials factor very heavily in the solutions of lin-
ear systems of differential equations. We also notice that, in terms of
limiting behavior, these exponentials dominate the behavior (i.e. they
asymptotically overwhelm the factor t in case (2), and the trigono-
metric functions in (3)). That is to say, the long-term behavior is
determined by the exponentials, so that trajectories tend to decay
(i.e. approach (0, 0)) if Re(λ) < 0 and blow up (i.e. go away from
(0, 0)) if Re(λ) > 0.

2. The case when λ = 0 is somewhat special, but it is worth noting
that the solution forms for case (1) and (2) still hold, but that the
exponential becomes a constant.

3. What is implicit in this result, but has not been stated explicitly, is
that all solutions can be represented in one of these forms. That is to
say, every solution can be written in the form

x(t) = C1x1(t) + C2x2(t)

for some fundamental solution solutions x1(t) and x2(t), where the
form of these solutions are as above (Theorem 7.4.2 in text). It also
follows that, for any initial conditions x(0) = x0 and y(0) = y0 we can
solve uniquely for C1 and C2 so the solutions to initial value problems
are unique (Theorem 7.1.2 in the text). The parallel with second-order
differential equations should be striking, but not surprising, since we
know second-order differential equations can be written as a system of
two first-order differential equations.

Example 1: Determine the solution of

dx

dt
= −x+ 3y, x(0) = 1

dy

dt
= 3x− y, y(0) = 1.
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We have already determined that the general solution is[
x(t)
y(t)

]
= C1

[
−1
1

]
e−4t + C2

[
1
1

]
e2t.

It remains to use the initial conditions to solve for C1 and C2. We have
that x(0) = 1 and y(0) = 1 so that at t = 0 we have[

1
1

]
= C1

[
−1
1

]
+ C2

[
1
1

]
.

We can rewrite this as

−C1 + C2 = 1

C1 + C2 = 1.

We can solve this by a number of methods to determine that C1 = 0 and
C2 = 1 so that the particular solution is[

x(t)
y(t)

]
=

[
1
1

]
e2t.

Example 2: Determine the solution of

dx

dt
= −x+ 5y, x(0) = 1

dy

dt
= −2x+ y, y(0) = 1.

To find the eigenvalues, we realize

A =

[
−1 5
−2 1

]
, so A− λI =

[
−1− λ 5
−2 1− λ

]
.

The characteristic polynomial is given by

(−1− λ)(1− λ) + 10 = λ2 + 9 = 0.

It follows that λ = ±3i. We need to find the eigenvectors corresponding to
these values. We have

(A− (3i)I) =

[
−1− 3i 5
−2 1− 3i

]
.
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To find the corresponding eigenvector, we row reduce to get[
−1− 3i 5 0
−2 1− 3i 0

]
(−1+3i)R1−→

[
(−1− 3i)(−1 + 3i) 5(−1 + 3i) 0

−2 1− 3i 0

]
−→

[
10 −5 + 15i 0
−2 1− 3i 0

]
−→

[
1 −1

2 + 3
2 i 0

0 0 0

]
so that v = (1− 3i, 2). We rewrite this as

v =

[
1− 3i

2

]
=

[
1
2

]
+ i

[
−3
0

]
.

We set α = Re(λ) = 0 and β = Im(λ) = 3 and a = Re(v) = (1, 2) and
b = Im(v) = (−3, 0). It follows that the general solution is

x(t) = C1

([
1
2

]
cos(3t)−

[
−3
0

]
sin(3t)

)
+ C2

([
1
2

]
sin(3t) +

[
−3
0

]
cos(3t)

)
.

To solve for C1 and C2, we utilize the initial conditions x(0) = 1 and
y(0) = 1. At t = 0 we have[

1
1

]
= C1

[
1
2

]
+ C2

[
−3
0

]
so that we have

C1 − 3C2 = 1

2C1 = 1
.

It follows immediately that C1 = 1/2 and C2 = −1/6 so we have

x(t) =
1

2

([
1
2

]
cos(3t)−

[
−3
0

]
sin(3t)

)
− 1

6

([
1
2

]
sin(3t) +

[
−3
0

]
cos(3t)

)
=

[
1
1

]
cos(3t) +

1

3

[
4
−1

]
sin(3t)

Example 3: Determine the solution of

dx

dt
= x− 4y, x(0) = −1

dy

dt
= x− 3y, y(0) = 2.
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To find the eigenvalues, we realize

A =

[
1 −4
1 −3

]
, so A− λI =

[
1− λ −4

1 −3− λ

]
.

The characteristic polynomial is given by

(1− λ)(−3− λ) + 4 = λ2 + 2λ+ 1 = (λ+ 1)2 = 0

so that λ = −1 is a repeated eigenvector. To check for the eigenvector(s)
corresponding to this value, we have

(A− (−1)I) =

[
2 −4
1 −2

]
.

To find the corresponding eigenvector, we row reduce to get[
2 −4 0
1 −2 0

]
−→

[
1 −2 0
0 0 0

]
so that v = (2, 1). We notice that we have not obtained eigenvectors, so
that we need to look for a generalized eigenvector w. We have

(A− λI)w = v =⇒
[

2 −4 2
1 −2 1

]
∼
[

1 −2 1
0 0 0

]
.

If we set w2 = t, we see that w1 = 1 + 2t so that we have[
w1

w2

]
=

[
1 + 2t
t

]
=

[
1
0

]
+ t

[
2
1

]
.

Setting t = 0, we have w = (1, 0).
It follows that the general solution is given by

x(t) =

(
C1

[
2
1

]
+ C2

(
t

[
2
1

]
+

[
1
0

]))
e−t

To solve for C1 and C2, we utilize the initial conditions x(0) = −1 and
y(0) = 2. At t = 0 we have[

−1
2

]
= C1

[
2
1

]
+ C2

[
1
0

]
which implies

2C1 + C2 = −1

C1 = 2.
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It follows that C1 = 2 and C2 = −5. It follows that the solution is

x(t) =

(
2

[
2
1

]
− 5

(
t

[
2
1

]
+

[
1
0

]))
e−t

=

([
−1
2

]
− t
[

10
5

])
e−t

5 Phase Portrait

Now that we have a sense of what the solutions look like, we can construct a
much more detailed picture. In fact, we can completely enumerate the pos-
sible qualitatively different cases we found when we considered the analytic
solutions. We can break things apart something like this (for representative
pictures, see Figure 2):

1. Two real distinct eigenvalues (or repeated eigenvalues with
two distinct eigenvectors)

(a) If both eigenvalues are positive (λ1 > 0 and λ2 > 0) we say (0, 0)
is an unstable node or source.

(b) If both eigenvalues are negative (λ1 < 0 and λ2 < 0) we say (0, 0)
is a stable node or sink.

(c) If the eigenvalues have opposite sign, we say (0, 0) is a saddle
point.

2. Repeated eigenvalue, one eigenvector

(a) If the repeated eigenvalue is positive (λ > 0) we say (0, 0) is a
degenerate source.

(b) If the repeated eigenvalue is negative (λ < 0) we say (0, 0) is a
degenerate sink.

3. Complex eigenvalues

(a) If the real part of the eigenvalue is positive (α > 0) we say (0, 0)
is an unstable spiral or source spiral.

(b) If the real part of the eigenvalue is negative (α < 0) we say (0, 0)
is a stable spiral or sink spiral.

(c) If the real part of the eigenvalue is zero (α = 0) we say (0, 0) is a
center.
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4. Zero eigenvalue

(a) If there is a zero eigenvalue, we say that the system is degenerate
(there is a line of fixed points through (0, 0)).

source sink saddle

degenerate source degenerate sink

spiral source spiral sink center

Figure 2: Canonical pictures for the various cases of two-dimensional linear
autonomous differential equations.
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