MATH 320, Spring 2013, Assignment 1 Due date: Friday, February 1

Name (printed):						
UW Student ID Number:						
Discussion Castion, (single)						
Discussion Section: (circle)						
Robin Prakash:	301	302	303			
Sowmya Acharya:	304	206	307	308		

Instructions

1. Fill out this cover page **completely** and affix it to the front of your submitted assignment.

Raghvendra Chaubey:

- 2. **Staple** your assignment together and answer the questions in the order they appear on the assignment sheet.
- 3. Show all the work required to obtain your answers.
- 4. You are encouraged to collaborate on assignment problems but you must write up your assignment independently. Copying is strictly forbidden!

S#	Q#	Mark	
1.1	9	/1	
1.1	12	/3	
1.1	25	/3	
1.1	34	/1	
1.2	18	/3	
	1	/4	
	2	/6	
	3	/4	
Total:		/25	

352 353 354 355

Classification of DEs, Solutions, Integrals

Suggested problems:

Section 1.1, 1-26, 37-48 Section 1.2, 1-22, 24-35

Problems for submission:

Section 1.1: 9, 12, 25, 34

Section 1.2: 18

1. Classify the following differential equations according to their order and whether they are linear / non-linear, autonomous / non-autonomous, and homogeneous / non-homogeneous.

(a)
$$y'' - 2y' + y = 0$$

(b)
$$y' - \left(\frac{x}{1 + \tan^2(x)}\right) y = 0$$

(c)
$$y^{(4)} + xy'' = e^{2x}$$

(d)
$$y \cdot y' = 1$$

2. Find a function y(x) satisfying the given differential equation and initial condition.

(a)
$$y' = -\sin(x)e^{2x}$$
, $y(0) = 1$

[Hint: Consider integration by parts!]

(b)
$$y' = \frac{5}{3x^2 - 7x + 2}$$
, $y(3) = 0$

[Hint: Consider partial fractions!]

3. Let's track the position of a particle with the variable y. Suppose the particle is accelerating at a rate of te^{-5t} .

(a) Suppose the particle's initial position and initial velocity (i.e. at t=0) are both zero. Formulate the relevant differential equation and initial conditions (i.e. turn this into a math problem, not a word problem!).

(b) Solve the intial value problem derived in part (a).

(c) Does the particle ever return to its original position? Does it ever reverse direction? Justify your answers.