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Slope Fields, Separable and First-Order Linear
Differential Equations

Suggested problems:

Section 1.3, 1-22
Section 1.4, 1-29, 32
Section 1.5, 1-25, 31, 32

Problems for submission:

Section 1.3: 13, 14, 25

(You do not have to do the 95% part of question #25)
Section 1.4: 9, 14, 23, 27

Section 1.5: 2, 19, 24

(Justify your answers for full marks!)

1. Consider a body cooling (or warming) under Newton’s law of cooling
(ref: page 2 of text). This says that the rate of a body’s temperature
change (dT'/dt) is proportional to the difference between the body’s
current temperature (7) and the ambient environmental temperature
(A). In other words, we have

ar

— =kA=T), T(0)=1. (1)

(a) Find the solution of the initial value problem (1) by treating it
as a separable differential equation.

(b) Find the solution of the initial value problem (1) by rearranging
it as a first-order linear differential equation.

(¢c) Now suppose the temperature of the external environment is no
longer a constant value A, but fluctuates sinusoidally with time
about some mean (i.e. it has the form A + Bsin(t)). Using the
intuition behind Newton’s law of cooling, rewrite (1) using this
new form of the ambient environmental temperature.



(d) Solve the initial value problem derived in part (¢) with the pa-
rameter values A =40, B=10, k=1, and Ty = 0.

(e) Non-homogeneous differential equations frequently arise when there
is an external time-dependent force acting on the model, as there
is in this case. A common feature of the solutions of such sys-
tems is that they can be decomposed into long-term and transient
components (i.e. part of the solution remains for all time, while
some only factors sigificantly for a short-term). By considering
the limit t — oo, identify the long-term and transient portions of
the solution found in part (d).

(f) Comment on the long-term behavior of the temperature profile
of the body (i.e. relate the solution’s long-term behavior to the
physical problem).



