MATH 320, Spring 2013, Assignment 2 Textbook Questions

Section 1.3, \#13, 14 Determine whether existence of at least one solution of the given initial value problem is guaranteed and, if so, whether uniqueness of that solution is guaranteed:
\# 13: $\frac{d y}{d x}=\sqrt[3]{y} ; \quad y(0)=1$
\# 14: $\frac{d y}{d x}=\sqrt[3]{y} ; \quad y(0)=0$
Section 1.3, \# 25 You bail out of the helicopter of Example 3 and pull the ripcord of your parachute. Now $k=1.6$ in Eq. (3), so your downward velocity satisfies the initial value problem

$$
\frac{d v}{d t}=32-1.6 v, \quad v(0)=0 .
$$

In order to investigate your chances of survival, construct a slope field for this differential equation and sketch the appropriate solution cuve. What will your limiting velocity be? Will a strategically located haystack do any good? How long will it take you to reach 95% of your limiting velocity?

Section 1.4, \# 9, 14 Find the general solutions (implicit if necessary, explicit if convenient) of the following differential equations:
\# 9: $\left(1-x^{2}\right) \frac{d y}{d x}=2 y$
\# 14: $\frac{d y}{d x}=\frac{1+\sqrt{x}}{1+\sqrt{y}}$
Section 1.4, \# 23, 27 Find the particular solutions of the following initial value problems:
\# 23: $\frac{d y}{d x}+1=2 y, \quad y(1)=1$
\# 27: $\frac{d y}{d x}=6 e^{2 x-y}, \quad y(0)=0$
Section 1.4, \#2, 19, 24 Find the general solution of the following differential equations (particular solution if initial conditions are given):
\# 2: $\frac{d y}{d x}-2 y=3 e^{2 x}, \quad y(0)=0$
\# 19: $\frac{d y}{d x}+\cot (x) y=\cos (x)$
\# 24: $\left(x^{2}+4\right) \frac{d y}{d x}+3 x y=x, \quad y(0)=1$

