MATH 320, Spring 2013, Assignment 3

Due date: Friday, February 15

Name (printed):	
UW Student ID Number:	

Discussion Section: (circle)

Robin Prakash: 301 302 303

Sowmya Acharya: 304 306 307 308

Raghvendra Chaubey: 352 353 354 355

Instructions

- 1. Fill out this cover page **completely** and affix it to the front of your submitted assignment.
- 2. **Staple** your assignment together and answer the questions in the order they appear on the assignment sheet.
- Show all the work required to obtain your answers.
- 4. You are encouraged to collaborate on assignment problems but you must write up your assignment independently. Copying is strictly forbidden!

S#	Q#	Mark
1.6	10	/3
1.6	15	/3
1.6	23	/3
1.6	24	/3
1.6	35	/3
1.6	38	/3
1.6	56	/4
	1	/3
	2	/5
Tot	tal:	/30

Substitution Methods, (Power) Homogeneous, Bernoulli and Exact Differential Equations

Suggested problems:

Section 1.6: 1-28, 31-42, 55-62

Problems for submission:

Section 1.6: 10, 15, 23, 24, 35, 38, 56 (Justify your answers for full marks!)

1. Find the general solution of the differential equation

$$(2x^3 - y) dx + x dy = 0.$$

2. Assume that a population (denoted P) grows at a rate proportional to its own population when the population size is small (i.e. proportional to P) but encounters a second-power crowding term when the population is large (i.e. proportional to P^2). This gives rise to the logistic growth model

$$\frac{dP}{dt} = kP(M-P), \quad P(0) = P_0 \tag{1}$$

where k, M > 0 are non-negative constants.

(a) Treating the equation as a separable equation, show that the solution of (1) is given by

$$P(t) = \frac{MP_0}{P_0 + (M - P_0)e^{-kMt}}.$$

[Hint: See page 82 of the text]

(b) Show that (1) has the solution given in part (a) by treating the equation as a Bernoulli equation.