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1. Fill out this cover page
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Substitution Methods, (Power) Homogeneous, Bernoulli
and Exact Differential Equations

Suggested problems:

Section 1.6: 1-28, 31-42, 55-62

Problems for submission:

Section 1.6: 10, 15, 23, 24, 35, 38, 56
(Justify your answers for full marks!)

1. Find the general solution of the differential equation

(2x3 − y) dx + x dy = 0.

2. Assume that a population (denoted P ) grows at a rate proportional
to its own population when the population size is small (i.e. propor-
tional to P ) but encounters a second-power crowding term when the
population is large (i.e. proportional to P 2). This gives rise to the
logistic growth model

dP

dt
= kP (M − P ), P (0) = P0 (1)

where k,M > 0 are non-negative constants.

(a) Treating the equation as a separable equation, show that the
solution of (1) is given by

P (t) =
MP0

P0 + (M − P0)e−kMt
.

[Hint: See page 82 of the text]

(b) Show that (1) has the solution given in part (a) by treating the
equation as a Bernoulli equation.


