MATH 320, Spring 2013, Assignment 5 Due date: Friday, March 8

Name (printed):					
UW Student ID Number:					
Discussion Section: (circle) Robin Prakash:	301	302	303		
Sowmya Acharya:	304	306	307	308	
Raghvendra Chaubey:	352	353	354	355	

Instructions

- 1. Fill out this cover page **completely** and affix it to the front of your submitted assignment.
- 2. **Staple** your assignment together and answer the questions in the order they appear on the assignment sheet.
- 3. Show all the work required to obtain your answers.
- 4. You are encouraged to collaborate on assignment problems but you must write up your assignment independently. **Copying is strictly forbidden!**

S#	Q#	Mark		
3.1	21	/2		
3.2	12	/3		
3.2	15	/2		
3.2	20	/3		
3.2	27	/3		
3.3	17	/3		
3.3	35	/4		
	1	/5		
	2	/5		
Total:		/30		

Linear Systems, Gaussian Elimination, Applications

Suggested problems:

Section 3.1: 1-31, 33 Section 3.2: 1-28 Section 3.3: 1-30, 35-39

Problems for submission:

Section 3.1: 21 Section 3.2: 12, 15, 20, 27 Section 3.3: 17, 35 (Justify your answers for full marks!)

1. Solve the first-order differential equation

$$3y\frac{dy}{dx} = (y^2 + 1)(y^2 + 4).$$

[Hint: You will have to perform partial fraction decomposition keeping the $(y^2 + 1)$ and $(y^2 + 4)$ terms in tact—make sure you set this up correctly!]

2. Consider the third-order differential equation

$$\frac{d^3y}{dx^3} - 3\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 2y = 0.$$
 (1)

- (a) Verify that $y(x) = C_1 e^x + C_2 e^x \sin(x) + C_3 e^x \cos(x)$ is a solution of (1) for all values of $C_1, C_2, C_3 \in \mathbb{R}$.
- (b) Find the particular solution (i.e. solve for C_1, C_2 , and C_3) for the initial conditions y(0) = 1, y'(0) = 0 and y''(0) = 0.