MATH 320, Spring 2013, Assignment 5

 Textbook QuestionsSection 3.1, \#21 Use the method of elimination to determine whether the given linear system is consistent or inconsistent. For each consistent system, find the solution if it is unique; otherwise, describe the infinite solution set in terms of an arbitrary parameter t.

$$
\begin{aligned}
x+y-z & =5 \\
3 x+y+3 z & =11 \\
4 x+y+5 z & =14 .
\end{aligned}
$$

Section 3.2 Use elementary row operations to transform each augmented coefficient matrix to echeon form. Then solve the system by back substitution.
\#12

$$
\begin{aligned}
& 3 x_{1}+x_{2}-3 x_{2}=6 \\
& 2 x_{1}+7 x_{2}+x_{2}=-9 \\
& 2 x_{1}+5 x_{2}=-5
\end{aligned}
$$

\#15

$$
\begin{aligned}
3 x_{1}+x_{2}-3 x_{3} & =-4 \\
x_{1}+x_{2}+x_{3} & =1 \\
5 x_{1}+6 x_{2}+8 x_{3} & =8
\end{aligned}
$$

\#20

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}-x_{3}-2 x_{4}+2 x_{5}=6 \\
& x_{1}+3 x_{2}+2 x_{3}-7 x_{4}+3 x_{5}=9 \\
& 5 x_{1}+8 x_{2}-7 x_{3}+6 x_{4}+x_{5}=4
\end{aligned}
$$

Section 3.2, \# 27 Determine for what values of k the following system has (a) a unique solution; (b) no solution; (c) infinitely many solutions.

$$
\begin{array}{r}
x+2 y+z=3 \\
2 x-y-3 z=5 \\
4 x+3 y-z=k
\end{array}
$$

Section 3.3, \# 17 Find the reduced echelon form of the following matrix:

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & -1 & -4 \\
1 & -2 & -2 & 8 & -1 \\
2 & 3 & -1 & 3 & 11
\end{array}\right]
$$

Section 3.3, \# 35 Consider the homogeneous system

$$
\begin{aligned}
& a x+b y=0 \\
& c x+d y=0 .
\end{aligned}
$$

1. If $x=x_{0}$ and $y=y_{0}$ is a solution and k is a real number, then show that $x=k x_{0}$ and $y=k y_{0}$ is also a solution.
2. If $x=x_{1}, y=y_{1}$ and $x=x_{2}, y=y_{2}$ are both solutions, then show that $x=x_{1}+x_{2}, y=y_{1}+y_{2}$ is a solution.
