MATH 320, Spring 2013, Assignment 6 Textbook Questions

Section 3.4, \#3 Compute $c A+d B$ for

$$
A=\left[\begin{array}{cc}
5 & 0 \\
0 & 7 \\
3 & -1
\end{array}\right], B=\left[\begin{array}{cc}
-4 & 5 \\
3 & 2 \\
7 & 4
\end{array}\right], c=-2, d=4
$$

Section 3.4 Two matrices A and B are given. Calculate whichever of the matrices $A B$ and $B A$ is defined. \#5

$$
A=\left[\begin{array}{cc}
2 & -1 \\
3 & 2
\end{array}\right], B=\left[\begin{array}{cc}
-4 & 2 \\
1 & 3
\end{array}\right]
$$

\#8

$$
A=\left[\begin{array}{ccc}
1 & 0 & 3 \\
2 & -5 & 4
\end{array}\right], B=\left[\begin{array}{cc}
3 & 0 \\
-1 & 4 \\
6 & 5
\end{array}\right]
$$

\#12

$$
A=\left[\begin{array}{llll}
1 & 0 & 3 & -2
\end{array}\right], B=\left[\begin{array}{ccc}
2 & -7 & 5 \\
3 & 9 & 10
\end{array}\right]
$$

Section 3.4, \#16 Verify that $A(B C)=(A B) C$ for the following matrices:

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 3 \\
1 & 4
\end{array}\right], B=\left[\begin{array}{ll}
1 & -1 \\
3 & -2
\end{array}\right], C=\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
3 & 2 & 0 & 1
\end{array}\right]
$$

Section 3.4, \#21 State the solution of the following linear system in vector form:

$$
\begin{aligned}
& x_{1} \quad-x_{3}+2 x_{4}+7 x_{5}=0 \\
& x_{2}+2 x_{3}-3 x_{4}+4 x_{5}=0 .
\end{aligned}
$$

Section 3.5, \#6 Compute A^{-1} and then use it to solve $A \vec{x}=\vec{b}$ for

$$
A=\left[\begin{array}{ll}
4 & 7 \\
3 & 6
\end{array}\right], \vec{b}=\left[\begin{array}{c}
10 \\
5
\end{array}\right]
$$

Section 3.5 Find the inverse A^{-1} for the following matrices A :
\#13

$$
A=\left[\begin{array}{lll}
2 & 7 & 3 \\
1 & 3 & 2 \\
3 & 7 & 9
\end{array}\right]
$$

\#22

$$
A=\left[\begin{array}{llll}
4 & 0 & 1 & 1 \\
3 & 1 & 3 & 1 \\
0 & 1 & 2 & 0 \\
3 & 2 & 4 & 1
\end{array}\right]
$$

Section 3.5, \#30 Suppose that A, B, and C are invertible matrices of the same size. Show that the product $A B C$ is invertible and that $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$.

