MATH 320, Spring 2013, Assignment 7 Textbook Questions

Section 3.6, \#6 Use cofactor expansions to evaluate the following determinant. Exapdn along the row or column that minimizes the amount of computation that is required.

$$
\left|\begin{array}{ccccc}
3 & 0 & 11 & -5 & 0 \\
-2 & 4 & 13 & 6 & 5 \\
0 & 0 & 5 & 0 & 0 \\
7 & 6 & -9 & 17 & 7 \\
0 & 0 & 8 & 2 & 0
\end{array}\right|
$$

Section 3.6, \#16 Use any method you like to evaluate the following determinant:

$$
\left|\begin{array}{ccc}
2 & 4 & -2 \\
-5 & -4 & -1 \\
-4 & 2 & 1
\end{array}\right|
$$

Section 3.6, Use Cramer's rule to solve the following systems:
\#21

$$
\begin{aligned}
& 3 x+4 y=2 \\
& 5 x+7 y=1
\end{aligned}
$$

\#30

$$
\begin{aligned}
x_{1}+4 x_{2}+2 x_{3} & =3 \\
4 x_{1}+2 x_{2}+x_{3} & =1 \\
2 x_{1}-2 x_{2}-5 x_{3} & =-3
\end{aligned}
$$

Section 3.6, \#37 Apply Theorem 5 (adjoint form of inverse) to compute A^{-1} for

$$
A=\left[\begin{array}{ccc}
-4 & 1 & 5 \\
-2 & 4 & 5 \\
-3 & -3 & -1
\end{array}\right]
$$

Section 3.6, \#52 The square matrix A is called orthogonal provided that $A^{T}=A^{-1}$. Show that the determinants of such a matrix must be either +1 or -1 .

