MATH 320, Spring 2013, Assignment 7 Textbook Questions

Section 3.6, #6 Use cofactor expansions to evaluate the following determinant. Exapdn along the row or column that minimizes the amount of computation that is required.

3	0	11	-5	0
-2	4	13	6	5
0	0	5	0	0
$\overline{7}$	6	-9	17	7
0	0	8	2	0

Section 3.6, #16 Use any method you like to evaluate the following determinant:

Section 3.6, Use Cramer's rule to solve the following systems:

#21

$$3x + 4y = 2$$

$$5x + 7y = 1$$

#30

$$x_1 + 4x_2 + 2x_3 = 3$$

$$4x_1 + 2x_2 + x_3 = 1$$

$$2x_1 - 2x_2 - 5x_3 = -3$$

Section 3.6, #37 Apply Theorem 5 (adjoint form of inverse) to compute A^{-1} for

$$A = \begin{bmatrix} -4 & 1 & 5\\ -2 & 4 & 5\\ -3 & -3 & -1 \end{bmatrix}$$

Section 3.6, #52 The square matrix A is called **orthogonal** provided that $A^T = A^{-1}$. Show that the determinants of such a matrix must be either +1 or -1.