MATH 320, Spring 2013, Assignment 8 Textbook Questions

Section 4.1 Determine whether given vectors \vec{u}, \vec{v}, and \vec{w} are linearly independent or dependent. If they are linearly dependent, find scalars a, b, and c not all zero such that $a \vec{u}+b \vec{v}+c \vec{w}=\overrightarrow{0}$.
\# $21 \vec{u}=(1,1,-2), \vec{v}=(-2,-1,6), \vec{w}=(3,7,2)$
\#24 $\vec{u}=(1,4,5), \vec{v}=(4,2,5), \vec{w}=(-3,3,-1)$
Express the vector \vec{t} as a linear combination of the vectors \vec{u}, \vec{v}, and \vec{w}.
\# $28 \vec{t}=(7,7,7) ; \vec{u}=(2,5,3), \vec{v}=(4,1,-1), \vec{w}=(1,1,5)$
Section 4.3 Express the indicated vector \vec{w} as a linear combination fo the given vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$ if this is possible. If not show that it is impossible.

$$
\begin{aligned}
& \text { \# } 13 \vec{w}=(5,2,-2) ; \vec{v}_{1}=(1,5,-3), \vec{v}_{2}=(5,-3,4) \\
& \# 16 \vec{w}=(7,7,9,11) ; \vec{v}_{1}=(2,0,3,1), \vec{v}_{2}=(4,1,3,2), \vec{v}_{3}=(1,3,-1,3)
\end{aligned}
$$

Section 4.4 Determine whether the following vectors represent a basis of \mathbb{R}^{n}.

$$
\begin{aligned}
& \text { \# 2 } \quad \vec{v}_{1}=(3,-1,2), \vec{v}_{2}=(6,-2,4), \vec{v}_{3}=(5,3,-1) \\
& \text { \# 8 } \vec{v}_{1}=(2,0,0,0), \vec{v}_{2}=(0,3,0,0), \vec{v}_{3}=(0,0,7,6), \vec{v}_{4}=(0,0,4,5)
\end{aligned}
$$

Find a basis for the solution space of the given homogeneous linear system (i.e. find the null space).
\# 20

$$
\begin{aligned}
& x_{1}-3 x_{2}-10 x_{3}+5 x_{4}=0 \\
& x_{1}+4 x_{2}+11 x_{3}-2 x_{4}=0 \\
& x_{1}+3 x_{2}+8 x_{3}-x_{4}=0
\end{aligned}
$$

Section 4.5 Find both a basis for the row space and a basis for the column space of the given matrix A.

$$
\# \mathbf{6}\left[\begin{array}{cccc}
1 & 4 & 9 & 2 \\
2 & 2 & 6 & -3 \\
2 & 7 & 16 & 3
\end{array}\right], \quad \# \mathbf{1 2}\left[\begin{array}{ccccc}
1 & 1 & 3 & 3 & 0 \\
-1 & 0 & -2 & -1 & 1 \\
2 & 3 & 7 & 8 & 1 \\
-2 & 4 & 0 & 6 & 7
\end{array}\right]
$$

