MATH 320, Spring 2013, Assignment 10 Textbook Questions

Section 5.1 Verify that the functions $y_{1}(x)$ and $y_{2}(x)$ are solutions of the given differential equation. Then find a particular solution of the form $y(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)$ that satisfies the given initial conditions. Primes denote derivatives with respect to x.
\# 15. $x^{2} y^{\prime \prime}-x y^{\prime}+y=0 ; y_{1}=x, y_{2}=x \ln x ; y(1)=7, y^{\prime}(1)=2$

Determine whether the following pair of functions are linearly independent or linearly dependent on the real line.
\# 20. $f(x)=\pi, g(x)=\cos ^{2}(x)+\sin ^{2}(x)$
\# 25. $f(x)=e^{x} \sin x, g(x)=e^{x} \cos x$

Section 5.2 Show that the given set of functions are linearly dependent on the real number line. That is, find a non-trivial linear combination of the given functions that vanished identically.
\# 6. $f(x)=e^{x}, g(x)=\cosh (x), h(x)=\sinh (x)$

Use the Wronskian to prove that the given functions are linearly independent on the indicated interval.
\# 11. $f(x)=x, g(x)=x e^{x}, h(x)=x^{2} e^{x}$; the real line

Section 5.3 Find the general solutions of the following differential equation.
\# 7. $4 y^{\prime \prime}-12 y^{\prime}+9 y=0$

Solve the following initial value problem.
\# 23. $y^{\prime \prime}-6 y^{\prime}+25 y=0 ; y(0)=3, y^{\prime}(0)=1$
\# 38. Solve the initial value problem

$$
\begin{aligned}
& y^{\prime \prime \prime}-5 y^{\prime \prime}+100 y^{\prime}-500 y=0 \\
& y(0)=0, \quad y^{\prime}(0)=10, \quad y^{\prime \prime}(0)=250
\end{aligned}
$$

given that $y_{1}(x)=e^{5 x}$ is a particular solution of the differential equation.

