MATH 320, Spring 2013, Assignment 11 Due date: Monday, May 6

Name (printed):				
UW Student ID Number:				
Diamaian Cartinus (simila)				
Discussion Section: (circle)				
Robin Prakash:	301	302	303	

Sowmya Acharya: 304 306 307 308

Raghvendra Chaubey: 352 353 354 355

Instructions

- 1. Fill out this cover page **completely** and affix it to the front of your submitted assignment.
- 2. **Staple** your assignment together and answer the questions in the order they appear on the assignment sheet.
- 3. Show all the work required to obtain your answers.
- 4. You are encouraged to collaborate on assignment problems but you must write up your assignment independently. Copying is strictly forbidden!

S#	Q#	Mark
5.2	24	/2
5.5	10	/3
5.5	16	/3
5.5	26	/2
5.5	34	/3
5.5	38	/4
	1	/8
Total:		/25

Second-Order Linear Non-Homogeneous Equations

Suggested problems:

Section 5.2: 21-26

Section 5.5: 1-42, 44-46

Section 5.6: 1-18

Problems for submission:

Section 5.2: 24

Section 5.5: 10, 16, 26, 34, 38

(Justify your answers for full marks!)

1. Resonance is not a phenomenon reserved for undamped mechanisms. Re-consider the mass-spring example from class with the additional constraint that the system is subject to 2 Newtons per meter per second of damping. Suppose the system undergoes periodic forcing of the form $\cos(\omega t)$ where ω is as yet undetermined. That is to say, consider the following example:

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 4x(t) = \cos(\omega t). \tag{1}$$

[Hint: See Chapter 5.6, Example 6 for help.]

- (a) Find the general solution of (1). [**Hint:** Note that we do not need to consider cases for ω !]
- (b) Suppose the spring is initially at rest at the neutral position x = 0. Solve the initial value problem corresponding to (1).
- (c) By considering the limit as $t \to \infty$, divide the solution from part (a) into two parts: a transient solution $x_{tr}(t)$ which goes to zero in the limit, and a steady periodic solution $x_{sp}(t)$ which does not. (In other words, write $x(t) = x_{tr}(t) + x_{sp}(t)$.)
- (d) Find the amplitude of the steady periodic function $x_{sp}(t)$ found in part (c). [**Hint:** Consider writing the portion $x_{sp}(t)$ in the form $A\cos(\omega t \alpha)$ but only find A.]
- (e) At which value of ω does A achieve its maximum? Interpret this value in terms of the physical system. In particular, how does it compare to the natural frequency ω_0 of the system? [**Hint:** Take the derivative of A with respect to ω !]