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Second-Order Linear Non-Homogeneous Equations

Suggested problems:

Section 5.2: 21-26
Section 5.5: 1-42, 44-46
Section 5.6: 1-18

Problems for submission:

Section 5.2: 24
Section 5.5: 10, 16, 26, 34, 38
(Justify your answers for full marks!)

1. Resonance is not a phenomenon reserved for undamped mechanisms.
Re-consider the mass-spring example from class with the additional
constraint that the system is subject to 2 Newtons per meter per
second of damping. Suppose the system undergoes periodic forcing
of the form cos(ωt) where ω is as yet undetermined. That is to say,
consider the following example:

d2x

dt2
+ 2

dx

dt
+ 4x(t) = cos(ωt). (1)

[Hint: See Chapter 5.6, Example 6 for help.]

(a) Find the general solution of (1). [Hint: Note that we do not
need to consider cases for ω!]

(b) Suppose the spring is initially at rest at the neutral position x =
0. Solve the initial value problem corresponding to (1).

(c) By considering the limit as t→∞, divide the solution from part
(a) into two parts: a transient solution xtr(t) which goes to zero
in the limit, and a steady periodic solution xsp(t) which does not.
(In other words, write x(t) = xtr(t) + xsp(t).)

(d) Find the amplitude of the steady periodic function xsp(t) found
in part (c). [Hint: Consider writing the portion xsp(t) in the
form A cos(ωt− α) but only find A.]

(e) At which value of ω does A achieve its maximum? Interpret this
value in terms of the physical system. In particular, how does it
compare to the natural frequency ω0 of the system? [Hint: Take
the derivative of A with respect to ω!]


