MATH 320, Spring 2013, Assignment 12 Not for submission!

Name (printed):						
UW Student ID Number:						
Discussion Section: (circle) Robin Prakash:	301	302	303			
Sowmya Acharya:	304	306	307	308		
Raghvendra Chaubey	352	353	354	355		

Instructions

- 1. Fill out this cover page **completely** and affix it to the front of your submitted assignment.
- 2. **Staple** your assignment together and answer the questions in the order they appear on the assignment sheet.
- 3. Show all the work required to obtain your answers.
- 4. You are encouraged to collaborate on assignment problems but you must write up your assignment independently. Copying is strictly forbidden!

S#	Q#	Mark
		$/\infty$
Total:		$/\infty$

First-Order Systems of Differential Equations

Suggested problems:

Section 7.1: 1-10, 21-23

Section 7.3: 1-26 Section 7.5: 1-32

Problems for submission:

Section 7.1: 2, 7

Section 7.3: 5, 12, 24

Section 7.5: 4, 11, 18, 23

(Justify your answers for full marks!)

1. Another way to view the eigenvalue/eigenvector method of solving linear system is to decompose the matrix A into canonical form. If A has a distinct set of real eigenvalues $\lambda_1, \ldots, \lambda_n$ and eigenvectors $\vec{v}_1, \ldots, \vec{v}_n$, we can decompose A according to $A = PDP^{-1}$ where

$$P = \left[\begin{array}{c|c} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{array} \right] \quad \text{and} \quad D = \left[\begin{array}{cccc} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{array} \right].$$

- (a) Consider the system from Question #5 in Section 7.3. Show that the variable substitution $\vec{y} = P^{-1}\vec{x}$ transforms the system $\frac{d\vec{x}}{dt} = A\vec{x}$ into an uncoupled system of the form $\frac{d\vec{y}}{dt} = D\vec{y}$.
- (b) Find the general solution $\vec{y}(t)$ of the differential equation $\frac{d\vec{y}}{dt} = D\vec{y}$ found in part (a). [**Hint:** Remember the constants of integration!]
- (c) Use the substitution from part (a) to verify the solution of $\frac{d\vec{x}}{dt} = A\vec{x}$ already found for Question #5 in Section 7.3.
- 2. Given a repeated eigenvalue λ and a chain of generalized eigenvectors $\vec{v}_1, \ldots, \vec{v}_n$ (where \vec{v}_1 is a regular eigenvector), we can decompose the

matrix A into the form $A = PJP^{-1}$ where P is as above and

$$J = \left[\begin{array}{ccccc} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{array} \right].$$

- (a) Consider the system from Question #11 in Section 7.5. Show that the variable substitution $\vec{y} = P^{-1}\vec{x}$ transforms the system $\frac{d\vec{x}}{dt} = A\vec{x}$ into a system of the form $\frac{d\vec{y}}{dt} = J\vec{y}$.
- (b) Find the general solution $\vec{y}(t)$ of the differential equation $\frac{d\vec{y}}{dt} = J\vec{y}$ found in part (a). [**Hint:** The system is not fully uncoupled, but can be solved by solving for y_3 first, then y_2 , then y_1 .]
- (c) Use the substitution from part (a) to verify the solution of $\frac{d\vec{x}}{dt} = A\vec{x}$ already found for Question #11 in Section 7.5.