
MATH 320, WEEK 7:
Matrix Inverses

1 Inverses

Let’s reconsider the linear system

A~x = ~b

where A is a n× n matrix and ~x and ~b are n-dimensional vectors.
We recognize that a solution to this expression amounts for solving for ~x.

We have been able to accomplish this so far by using Gaussian elimination.
Now that we have a few matrix algebra operations to work with, we would
like to see if we can accomplish the goal of isolating ~x in a more algebraic
way.

Take the analogy of an algebraic equation in the real numbers:

a · x = b.

In order to solve for x, the method is simple: we divide both the left-hand
and right-hand sides by a to get

x =
b

a
.

Now reconsider the linear system A~x = ~b. If we are going to believe we
can really develop a comprehensive algebraic system for matrices, we had
better believe that it will include an operation like division. It is one of the
most basic things we can do! But we have already seen that multiplication
is more complicated than simply performing operations component-wise.
Division must similarly be overwhelming (and it is!).

The trick to expanding our system of matrix algebra operations to in-
clude division is to view division not as an operation in its own right, but to
it view as the inverse of matrix multiplication. We can be even more explicit
than this, is fact. Consider again the algebraic expression ax = b over the
real numbers. Rather than treating division as its own operation, we could
have written

ax = b =⇒ a−1ax = a−1b =⇒ 1 · x = a−1b =⇒ x =
b

a
.
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Of course, writing all this in place of a simple division operation with real
numbers is grown-inducing. But with matrices we will have no choice! There
is no explicitly defined division operation. But we do have an important
intuition from the above reasoning. We need to find a matrix (call it A−1)
which, when multiplied on the left-hand side of A gives the matrix equivalent
of the real number 1 (i.e. the identity matrix I) so that when we multiply
out the left-hand side we are just left with ~x! This would give the analogous
chain of matrix equations

A~x = ~b =⇒ A−1A~x = A−1~b =⇒ I~x = A−1~b =⇒ ~x = A−1~b.

For example, consider the linear system of equations 2 −1 1
−1 1 1
2 −1 0

 x1
x2
x3

 =

 1
0
−1

 .

We can solve this by Gaussian elimination, but we can also search for a
matrix such that A−1A = I. Fortunately, we will not have to guess what
this matrix is—we will be able to find it. For our purposes now, it will be
sufficient to check. We can easily verify that the matrix

A−1 =

 −1 1 2
−2 2 3
1 0 −1


is the matrix we want because

A−1A =

 −1 1 2
−2 2 3
1 0 −1

 2 −1 1
−1 1 1
2 −1 0

 =

 1 0 0
0 1 0
0 0 1

 .

By the previous sequence of matrix operations, we have that the solution
must be

A~x = ~b =⇒ ~x = A−1~b

so that  x1
x2
x3

 =

 −1 1 2
−2 2 3
1 0 −1

 1
0
−1

 =

 −3
−5
2

 .

There are a few notes worth making about this process:
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• It is important to remember that matrix multiplication in general is
not commutative. If we perform a matrix multiplication on the left
of one side of an equation, we have to perform it on the left of the
other. We would end up with an incorrect answer if we, for instance,
performed the operation ~bA−1.

• And immediate question is: What if A is not a square matrix? For
instance, what if A is a 3 × 4 matrix. We have already seen linear
systems corresponding to 3 equations and 4 unknowns. Can we handle
this with this method? The answer, for the purposes of this course is
no. We will only consider this method for systems where the number
of equations and unknowns are the same.

We can see that the matrix A−1 (if we can find it) in that it allows
us to perform the algebraic operation of division for matrices (dimension
permitting). We should pause, however, to give a formal definition and
consider some properties resulting from this definition.

Definition 1.1. Suppose A is an n × n matrix. Then A will be called
invertible if there exists an n×n matrix B for which BA = I = AB. Such
a matrix will be called the inverse of A and will commonly be denoted A−1.

We have the following notes of matrice inversion:

• An inverse A−1 does not always exist ! This should not come as a sur-
prise, if we consider the algebraic analogue justifying the introduction
of A−1. If we have ax = b, we are only justified in writing x = b

a if
a 6= 0. It will turn out that there is a matrix equivalent to dividing by
zero, although it is often carefully concealed within the matrices and
will not be obvious from looking at them. Matrices which do not have
an inverse will be called singular.

• The left inverse of (i.e. B such that BA = I) is the same as the right
inverse (i.e. C such that AC = I).

Proof. We have BA = I and AC = I. Basic operations allow us to
write

(BA)C = IC = C =⇒ B(AC) = C =⇒ BI = C =⇒ B = C.

• If an inverse exists, it is unique.
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Proof. Suppose there exist B and C so that BA = I = AB and
CA = I = AC. Then

C = CI = C(AB) = (CA)B = IB = B.

So the inverse is unique.

• We have not yet considered how to find matrix inverses A−1. Do not
feel overwhelmed if you looked at the form of A−1 and wonder how I
decided that was the matrix to use. We will find out soon enough!

It is (relatively) easy to verify that matrix A and B are inverses of one
another. All we have to do is verify that AB = I (or BA = I). We also
know that inverses are unique, and can be multiplied on either side of the
original matrix. That leaves only one small question: how do we find inverse
matrices? That is to say, given a matrix A, how do we find the matrix A−1

(if it exists)?
To answer this question, we will start by considering the simplest non-

trivial case: 2-by-2 matrices. That is to say, given a matrix

A =

[
a b
c d

]
,

let’s try to find a matrix B such that AB = I (we can write this as BA = I,
but the other order will be more useful). That is to say, let’s solve[

a b
c d

] [
b1 b2
b3 b4

]
=

[
1 0
0 1

]
.

This system may look daunting, but there is a very important simplification
we can make. If we consider the columns of B and I separately, this is
equivalent to the two system of equations[

a b
c d

] [
b1
b3

]
=

[
1
0

]
and [

a b
c d

] [
b2
b4

]
=

[
0
1

]
.

These matrix equations are immediate recognizable as the matrix form of a
linear system of equations of two equations in two unknowns (b1 and b3, and
b2 and b4, respectively). In other words, we can solve b1, b2, b3, and b4 (i.e.
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we can solve for B) by Gaussian elimination! The corresponding coefficient
matrices are [

a b 1
c d 0

]
and

[
a b 0
c d 1

]
.

Solving the first system will solve for b1 and b3 while the second system will
solve for b2 and b4.

We could perform these operations directly in this form, but there is
(yet another!) simplification we can make. We would notice very quickly
doing the separate row-reduction procedures that, in order to achieve the
row-reduced echelon form, we will be duplicating the same procedures on
the left-hand side of the coefficient matrices. This is because the left-hand
sides are identical. In order to avoid duplication of arithmetic, we can solve
both linear systems simultaneously by writing[

a b 1 0
c d 0 1

]
.

Now, when we perform row reduction, we will have to remember that the
first column to the right of the line solves for b1 and b3, while the second
column to the right of the line solves for b2 and b4.

Fortunately, we can perform this row reduction operation directly. We
have [

a b 1 0
c d 0 1

]
R′

1=(1/a)R1−→
[

1 b
a

1
a 0

c d 0 1

]
R′

2=R2−cR1−→
[

1 b
a

1
a 0

0 d− bc
a − c

a 1

]
−→

[
1 b

a
1
a 0

0 ad−bc
a − c

a 1

]
R′

2=(a/(ad−bc))R2−→
[

1 b
a

1
a 0

0 1 − c
ad−bd

a
ad−bc

]
R′

1=R1−(b/a)R2−→

[
1 0 1

a + bc
a(ad−bc) −

b
ad−bc

0 1 − c
ad−bc

a
ad−bc

]

−→
[

1 0 d
ad−bc − b

ad−bc
0 1 − c

ad−bc
a

ad−bc

]
Yikes! That was a crazy amount of work, but there is a silver lining: we will
never have to do it again. The values to the right-hand side of the dividing
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line correspond to the values of b1, b2, b3, and b4. It turns out that we can
read off the matrix B directly. We have

B = A−1 =
1

ad− bc

[
d −b
−c a

]
.

The key point is that this is the form of the inverse matrix A−1 for any
2× 2 matrix A. In other words, we will never have to perform this hideous
calculation ever again for a 2× 2 matrix!

There are a few notes worth making:

• The general technique for finding the inverse of a 2 × 2 matrix is to
flip the terms along the main diagonal (i.e. a and d), reverse the sign
of the terms along the opposite diagonal (i.e. b and c), and divide by
ad− bc (which we will give a formal name soon).

• We can determine from this formula exactly what the condition for
invertibility is! The only possible way that a 2 × 2 matrix could fail
to be invertible is when ad− bc = 0, since this would result in division
by zero. This is a necessary and sufficient condition—if all we are
interested in is whether a 2 × 2 matrix is invertible, all we need to
check is ad − bc. If this evaluates to anything other than zero, the
matrix is invertible and we can find the inverse A−1 by the above
formula.

• Unfortunately, it is only possible to find a general formula for inverses
(in a reasonable amount of time) for 2 × 2 matrices. It is important
to note, however, that the technique for finding inverse for higher
dimensional square matrices is exactly the same. It just happens that
in the 2× 2 case we have a general formula that is not overwhelming
and can be committed to memory (which saves time!).

Now let’s return to the original example. Suppose we wanted to find the
inverse of the matrix

A =

 2 −1 1
−1 1 1
2 −1 0

 .

Suppose we did not know what the inverse was, we could find it by solving
for the matrix B according to 2 −1 1

−1 1 1
2 −1 0

 b1 b2 b3
b4 b5 b6
b7 b8 b9

 =

 1 0 0
0 1 0
0 0 1

 .
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We can solve for b1, . . . , b9 by performing Gaussian elimination: 2 −1 1 1 0 0
−1 1 1 0 1 0
2 −1 0 0 0 1


R′1 = −R2

R′2 = R1
−→

 1 −1 −1 0 −1 0
2 −1 1 1 0 0
2 −1 0 0 0 1


R′2 = R2 − 2R1

R′3 = R3 − 2R1
−→

 1 −1 −1 0 −1 0
0 1 3 1 2 0
0 1 2 0 2 1


R′1 = R1 + R2

R′3 = R3 −R2
−→

 1 0 2 1 1 0
0 1 3 1 2 0
0 0 −1 −1 0 1


R′3 = −R3 −→

 1 0 2 1 1 0
0 1 3 1 2 0
0 0 1 1 0 −1


R′1 = R1 − 2R3

R′2 = R2 − 3R3
−→

 1 0 0 −1 1 2
0 1 0 −2 2 3
0 0 1 1 0 −1

 .

Following the logic from before, we can read off the inverse matrix as what
is left on the right-hand side. We have

B = A−1 =

 −1 1 2
−2 2 3
1 0 −1


which we have already verified is the correct inverse.
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