MATH 320, WEEK 5:
Numerical Approximation (Runge-Kutta)

Let’s revisit the earlier example

dy

2 2
= 0)=0. 1
o = Ty) (1)

No explicit solution for this formula can be found by the methods we have
used so far, and in fact, no solution involving elementary functions exists
for this differential equation. Nevertheless, a solution just exist because
f(z,y) = 22 + y? is continuous everywhere. In order to determine specific
information about this solution, we must use a numerical method such at
the forward Euler method or the Runge-Kutta method. Respectively, the
formulas are given by

Forward Euler: Yn+1 = Yn + f(Tn, yn)Ax. (2)

and

A
Yni1 = Yo+ o (kg + 2y + 2k + ky)

6
where
kl = f(xn7 yn)
1 1 (3)
Runge-Kutta: ko = f(xy, + §A$, Yn + §k‘1Ax)

1 1
ks = f(zn + §A$7yn + §k2A$)
k4 = f(xn + A.le, Yn + k’3A$)'

Let’s suppose we have want information about the particular solution to
(1) at the point z = 1.5—that is to say, we want to estimate y(1.5). (For
reference, the “true” value is y(1.5) = 1.517447537.) We will attempt to use
the forward Euler method with the Ax values Ax = 0.5,0.1,0.01, and 0.001.
We have our work cut out for us! We will need (Zfinai — Tinitial)/Ax =
1.5/0.001 = 1500 computations to produce the estimate for y(1.5) using
Ax = 0.001. Fortunately, computers can implement such recursive algo-
rithms as Euler’s method (and the Runge-Kutta method) very quickly.

We can carry out the procedure outlined in the lecture notes by hand to
get the first few estimates with our calculators, but for small step-sizes we

Ax ‘ y(1.5) ‘ error steps

0.5 0.6328125 0.884635 3

0.1] 0.9307268557 | 0.5867207 | 15
0.01 | 1.479113716 | 0.0383338 | 150
0.001 | 1.513502037 | 0.0039455 | 1500

will definitely have to use a computer. The output from this gives the result
contain in the table above.

We can see that there is a marked improvement by reducing the step size.
This makes sense—we have less chance of floating far away from the true
trajectory if we take smaller steps before correcting ourselves. We might
wonder if there is a better way, however, and of course there is: we can
choose a different numerical schemical scheme. The Runge-Kutta method is
a popular choice and is known to produce less error per step than the forward
Euler, but at the cost of being more computationally intensive during each
step. Let’s see how it performs for this example taking Az = 0.5,0.1 and
0.01.

The computations are easy enough to perform for Az that we will do one
step by hand. Thereafter, we will have to rely on a computer—or dedicate a
significantly greater amount of time to this course than any of us currently
have. As always, we have 1 = z¢9 + Az = (0) 4+ (0.5) = 0.5. To compute
y1, we need k1, ko, k3, and k4. We have

ki = f(zo,y0)Az = z§ +y3 = (0)*+ (0)* =0

and
1 1
ko = f(:UQ + §A$,y0 + 5]{:1Ax)
1 1
= (zo + iAa?)Q + (y1 + iklAm)Q
1 1
= ((0) + 5(0.5))2 +((0) + 5(0)(0.5))2 = 0.0625
and

1 1
k3 = f(xo + §A1:,y0 + §k2Al‘)
1 1
= (20 + §A$)2 + (yo + §7€2A$)2

= ((0) + %(0.5))2 + ((0) + %(0.0625)(0.5))2
= 0.06274414

and

ky = f(wo + Az, yo + k3Ax)
= (w0 + Ax)* + (yo + k3Ax)?
= ((0) + (0.5))% 4 ((0) + (0.06274414)(0.5))?
= 0.250984206.

That was a lot of work, and we haven’t even computed the estimate y; yet!
We finally have

A
y1:y0+%(k1+2k2+2k3+k4)

= (0) + % ((0) + 2(0.0625) + 2(0.06274414) + (0.250984206))

= 0.041789373.

At this point, we are probably about to throw our hands up and swear
off the Runge-Kutta method once and for all. This was a pile of work just to
do one time-step! Before we despair too much, however, we should recognize
that all the work have done is easily programmed into a computer, and that
is exactly what is done in application. Letting my laptop do the rest of the
work, in a fraction of a second we have the following estimates:

Az ‘ y(1.5) ‘ error steps
0.5 | 1.521061677 | 0.00361414 3
0.1 | 1.517473413 | 0.000025876 15
0.01 | 1.517447548 | 0.000000011 | 150

The reason we have gone through all of this trouble—or rather, let our
computers go through all this trouble—should now be clear. The Runge-
Kutta method gives a significantly better estimate of the true value per step.
No matter how ridiculous we find the amount of computation necessary in
each step to be, we cannot escape the overall efficiency. We have obtained a
better estimate of y(1.5) in three steps of the Runge-Kutta method (error=
0.00361414) than we obtained in 1500 iterations of the forward Euler method
(error= 0.0039455). It should come as no surprise, therefore, to learn that
the forward Euler method—while illustrative and intuitive—is never, ever,
ever use in practice. Even though each step is easy to compute, the overall
burden of cumulative errors makes it tremendously inefficient.

