Math 320, Spring 2013, Term Test I Linear Algebra and Differential Equations

Date: Friday, February 22 Lecture Section: 004

Name (printed):	
UW Student ID Number:	

Discussion Section: (circle)

Robin Prakash: 301 302 303

Sowmya Acharya: 304 306 307 308

Raghvendra Chaubey: 352 353 354 355

Instructions

- 1. Fill out this cover page **completely** and make sure to circle your discussion section.
- 2. Answer questions in the space provided, using backs of pages for over-flow and rough work.
- 3. Show all the work required to obtain your answers.
- 4. No calculators are permitted.

FOR EXAMINERS' USE ONLY	
Page	Mark
2	/6
3	/6
4	/7
5	/6
Total	/25

1. Definitions and Classification:

[2] (a) Classify the following differential equations according to their order, and whether they are linear / nonlinear, autonomous / nonautonomous, and homogeneous / nonhomogeneous.

i.
$$\frac{d^2y}{dx^2} - y^2 = y$$

ii.
$$\frac{dy}{dx} = \sin(x) + xy$$

[1] (b) State the condition required for the differential equations M(x, y) dx + N(x, y) dy = 0 to be exact.

[3] 2. True/False:

- (a) A Bernoulli differential equation (i.e. $\frac{dy}{dx} + P(x)y = Q(x)y^n$) can be reduced to a first-order linear differential equation by the substitution $v = y^{1-n}$. [True / False]
- (b) The integration factor for the first-order linear differential equation $y' + \frac{1}{x}y = \sin(x)$ is $\rho(x) = x$. [True / False]
- (c) A sufficient condition for the first-order differential equation $\frac{dy}{dx} = f(x, y)$ to have a unique solution through (x, y) is that f(x, y) is continuous at (x, y). [True / False]

3. Slope Fields:

Consider the following differential equation:

$$\frac{dy}{dx} = \sqrt{1 - y^2}, \quad -1 \le y \le 1. \tag{1}$$

[2] (a) Show that $y(x) = \sin(x - C)$ for $C - \pi/2 \le x \le C + \pi/2$ is a solution to (1) for all $C \in \mathbb{R}$.

[2] (b) Sketch the slope field and, based on this sketch and the solution y(x) in part (a), overlay a few particular solutions.

[2] (c) Determine the particular solution of (1) for the initial conditions y(0) = 0. Comment on the uniqueness of solutions at the limits of the solution, i.e. consider what happens at $x = C - \pi/2$ and $x = C + \pi/2$. [Hint: Try to find another solution to (1)!]

4. General Solutions:

Find the general solutions of the following differential equations:

[3] (a)
$$(1+x)^2 \frac{dy}{dx} = (1+y)^2$$

[4] (b)
$$x\frac{dy}{dx} = y + 2\sqrt{xy}$$

5. Applications:

Assume that a population (denoted P) grows at a rate proportional to its own population when the population size is small (i.e. proportional to P) but encounters a third-power crowding term when the population is large (i.e. proportional to P^3). After simplifying, rescaling and factoring, this gives rise to the growth model

$$\frac{dP}{dt} = P(1 - P^2). (2)$$

[5] (a) Find the general solution of (2). [Hint: The equation is separable, but there is an easier solution method.]

[1] (b) What is the limiting value of the population? [Hint: Take the limit as $t \to \infty$.]

Page 6 of 6 $\,$

Name: __

THIS PAGE IS FOR ROUGH WORK