Math 320, Spring 2013, Term Test I

Linear Algebra and Differential Equations

Date: Friday, February 22
Lecture Section: 004

Name (pfinted):

UW Student ID Number: w
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1. Deﬁhitions and Clagsification:

21  (a) Classify the following differential equations according to their order, and whether
they are linear / nonlinear, autonomous / nonautonomous, and homogeneous /
nonhomogeneous.
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1] (b) State the condition required for the differential equations M (z,y) dx-+N{z,y) dy =
0 to be exact.
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[3] 2. True/False:

_ " _
(a) A Bernoulli dlﬂ:"erentlai equatmn (ie. d_ + P(z)y = Q(z)y") can be reduced to a

ﬁrst order linear differential equation by the substitution v =y

False]
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(b) The integration factor for the first-order linear differential equation g’ + Y= sin{z)
is p(z) = . [ / False] '

(c) A sufficient condition for the first-order differential equatlon — = f(z,y) to have a

unique solution through (z, y) is that f(z,y) is continuous at (3: y). [True /iFalse]'
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3. Slope Fields:

Consider the following differential equation:

d
—=VI-y, -1<y<l (1)

[2] (a} Show that y(z) = sin(z — C) for € — /2 < 2 < C'+7/2 is a solution to (1) for all
CcR. '
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overlay a few particular solutions.
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[2] (c) Determine the particular solution of (1) for the initial conditions y(0) = 0. Com-
‘ ment on the uniqueness of solutions at the limits of the solution, i.e. consider what
happens at x = C — /2 and © = C'+ /2. [Hint: Try to find another solution to
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4. General Solutions:

Find the genéral solutions of the following differential equations:
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5. Applications:

Assume that a population (denoted P) grows at a rate proportional to its own population
when the population size is small (1.e. proportional to P) but encounters a third-power
crowding term when the population is large (i.e. proportional to P?). After simplifying,
rescaling and factoring, this gives rise to the growth model

dapP
— = P(1-P?. . 2
2 Py )
5] (a) Find the general solution of (2). [Hint: The equation is separable, but there is an
easier solution method.] 5 f,} : .
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