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1. Definitions:

(a) State the definition of what it means for a set of vectors {#, ¥, ..., Ty} to be lin-

early independent.

C’ﬁl + Qlﬁ ot C.l‘;\_f L= O
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(b) Give the definition of what it means for V' to be a vector space.
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(¢) State the Rank-Nullity Theorem.
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2. True/False:

(a) fan n matrix A has a left inverse B then the right inverse is the adjoint of B.

[True /{False

(b) An n x n matrix A is invertible if and only if det{A) # 0. {Trudy/ False]

(¢) Every basis of a 4-dimensional subspace of R” has 4 vectors in it. / False]
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3. Gaussian Elimination:

(a) Write the following linear system as the matrix equation AZ = b then determine
4] values of k € R for which the system has (i) a unique solution; (il) no solution; and

(ili) infinitely many solutions.
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2] {b) Use the fact that
| —3 1 4 L1 -1
A= -1 3 -2 = Al=_| 11 3 -10
3 -1 -5 81 8 0 -8
to solve the linear system
—3x1 + 2 + day =1
—r -+ 351)2 — 2%1 =1
dry — wmg — hxz = L.
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4. Determinants and Inverses:

4 Determine the adjoint of the following matrix and use it to find A~ (part marks will
be awarded for solving for A™' by another method}:

20 WL il
ETA] At et
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5. Mafrix Spaces:

3] Consider the following matrix A and its row-reduced echelon matrix (to the right):
11 3 =2 10 -2 0
Aol 2 0 -4 01 5 0
- I -1 -7 90 00 0 1
-1 2 12 7 00 0 0

State a basis for the following vector spaces:

(a) Therow space of A: Ié 3 Z; Q\’ ‘ ﬁ} S %3\} (g @% i 3

(b} The colﬁmn space of A:

{¢) The null space of A:
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6. Eigenvalues/Figenvectors:

[4] Determine the eigenvalues and eigenvectors of the following matrix:

Am—[.lz ff]
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7. Theory:

(2] Suppose V' = {7, Ty, T3} C R" are pairwise linearly independent (i.e. we have {71, taf,
{1, U3}, and {#2, U3} are linearly independent). Prove or disprove the claim that {77, ¥, T}
is linearly independent. [Hint: To prove, you must show the claim holds; to disprove,
find a counter example.]
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