Math 320, Spring 2013, Term Test II Linear Algebra and Differential Equations

Date: Friday, April 12 Lecture Section: 004

Name (printed):	
UW Student ID Number:	

Discussion Section: (circle)

Robin Prakash: 301 302 303

Sowmya Acharya: 304 306 307 308

Raghvendra Chaubey: 352 353 354 355

Instructions

- 1. Fill out this cover page **completely** and make sure to circle your discussion section.
- 2. Answer questions in the space provided, using backs of pages for overflow and rough work.
- 3. Show all the work required to obtain your answers.
- 4. No calculators are permitted.

FOR EXAMINERS' USE ONLY	
Page	Mark
2	/6
3	/6
4	/7
5	/6
Total	/25

1. <u>Definitions:</u>

[1] (a) State the definition of what it means for a set of vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ to be *linearly dependent*.

[1] (b) State the Rank-Nullity Theorem.

[1] (c) State a necessary and sufficient condition for an $n \times n$ matrix to be invertible.

[3] 2. True/False:

- (a) If an $n \times n$ matrix A is invertible then the inverse is unique. [True / False]
- (b) If an $n \times n$ matrix has fewer than n real distinct eigenvalues it must have a complex eigenvalue. [True / False]
- (c) Every basis of a 2-dimensional subspace of \mathbb{R}^5 has 5-2=3 vectors in it. [True / False]

3. Gaussian Elimination:

(a) Write the following linear system as the matrix equation $A\vec{x} = \vec{b}$ then determine values of $k \in \mathbb{R}$ for which the system has (i) a unique solution; (ii) no solution; and (iii) infinitely many solutions.

$$2x_1 - x_2 = 2$$

$$-x_1 + x_2 + kx_3 = 3$$

$$x_2 + 2x_3 = -1.$$

[2] (b) Use the fact that

$$A = \begin{bmatrix} -1 & 1 & -2 \\ 1 & 3 & -2 \\ -1 & -1 & -2 \end{bmatrix} \implies A^{-1} = \frac{1}{4} \begin{bmatrix} -4 & 2 & 2 \\ 2 & 0 & -2 \\ 1 & -1 & -2 \end{bmatrix}$$

to solve the linear system

$$-x_1 + x_2 + x_3 = 3$$

$$x_1 + 3x_2 - 2x_3 = -2$$

$$-x_1 - x_2 - 2x_3 = 5.$$

4. Determinants and Inverses:

[4] Determine the adjoint of the following matrix and use it to find A^{-1} (part marks will be awarded for solving for A^{-1} by another method):

$$A = \left[\begin{array}{rrr} -1 & 0 & 3 \\ 0 & 3 & 0 \\ 2 & -2 & 0 \end{array} \right]$$

5. Matrix Spaces:

[3] Consider the following matrix A and its row-reduced echelon matrix (to the right):

$$A = \begin{bmatrix} 1 & -2 & 3 & 5 & -1 \\ -1 & 2 & -2 & -2 & 0 \\ 1 & -2 & 4 & 8 & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -2 & 0 & -4 & 2 \\ 0 & 0 & 1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

State a basis for the following vector spaces:

- (a) The row space of A:
- (b) The column space of A:
- (c) The null space of A:

- 6. Eigenvalues/Eigenvectors:
- [4] Determine the eigenvalues and eigenvectors of the following matrix:

$$A = \left[\begin{array}{cc} -5 & 2\\ -12 & 5 \end{array} \right]$$

7. Theory:

Suppose $V = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\} \subseteq \mathbb{R}^n$ are pairwise linearly independent (i.e. we have $\{\vec{v}_1, \vec{v}_2\}$, $\{\vec{v}_1, \vec{v}_3\}$, and $\{\vec{v}_2, \vec{v}_3\}$ are linearly independent). Prove or disprove the claim that $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly independent. [**Hint:** To prove, you must show the claim holds; to disprove, find a counter example.]

Math 320 Term Test II, Spring 2013

Page 6 of 6

Name:

THIS PAGE IS FOR ROUGH WORK