MATH 320, WEEK 1:
Introduction, Definitions & Review

1 Introduction

This course is intended to be an introduction to differential equations and
linear algebra.

While these two topics are often treated separately, there are several
advantages to learning them together. The most obvious advantage is that
linear algebra is incredibly useful in analysing differential equations. It is
the linear algebra toolbox that will allow us to formalize and systematize
the study of ordinary differential equations. It simply cannot be escaped: to
properly study differential equations, one needs to understand linear algebra.

That said, linear algebra is a huge discipline in its own right. It has
applications on the mathematical side of practically every applied science—
from computer science, to probability theory, to economics. The study of
this topic given in this course will be necessarily abbreviated and tailored to
the study of differential equations in particular, but it will also be a sufficient
basis to understand the applications in other disciplines.

The course will be broken down into approximately the following chunks:

e First five weeks: Differential equations

— Basic definitions, notation, theorems, and applications.

— We will investigate and solve selected differential equations using
a variety of special solution methods.

— It should be noted and expected that the methods we will en-
counter during this section of the course will be presented on
a very case-by-case basis. That is to say, we will encounter a
number of tricks which may not be—and are not intended to
be—obvious or necessarily related to the previous tricks we have
encountered. Nevertheless, these tricks are very important to un-
derstanding approaches taken to analysing and solving differential
equations, and several of the classes of differential equations (e.g.
separable, first-order linear) will be recurrent.

Second five weeks: Linear algebra



— Basic definitions, notation, theorems, and applications (again!).

— This will be a standard introduction to the basic elements of
linear algebra: matrices and vectors, matrix operations, inverses
and determinants, linear independent and bases, eigenvalues and
eigenvectors.

Third five weeks: Linear systems of differential equations

— Combination of the two previous topics!

— Unsurprisingly, the tools develop to this point are not indepen-
dent, and we will spend the final four to five weeks combining
them. We will revisit a few examples for the first five weeks, but
we will primarily forge ahead into the analysis of linear systems
of differential equations. The tools developed here are further
useful in the study of non-linear systems of differential equations
(which is investigated in Math 415).

This is all well and good, but we might still be wonder what, after all,
a differential equation is. And perhaps just as importantly, we might be
wondering why we are interested in them. So, in order to set the stage for
the central study of this course, let’s ask the following questions:

1. What is a differential equation?
2. How do differential equations arise in practice?

The simple answer to the first question is that a differential equation
is any equation (i.e. algebraic expression) which involves functions
and their derivatives. We can find examples which take full advantage of
the generality of this expression, and dream up examples with fourth or fifth
order derivatives, or examples which have complicated variable dependences,
but we need not do so. In fact, differential equations can be formulated very
simply. For example, we all know from basic calculus that the expression

y = sin(x)
gives rise to the derivative
dy
_ ) 1
I cos(x) (1)

We have grown quite accustomed to working in this direction. If we look
at this for just a moment, however, we notice that (1) exactly fits into the



definition we have just given. It is a differential equation! (Although a
rather trivial one.)

We can also get a sense from this example of what it means to solve
a differential equation. A solution to a differential equation is any
function which satisfies the equation. We can clearly see (by definition)
that y(x) = sin(z) satisfies the left-hand and right-hand side of (1). (In fact,
it is not the only such choice, but we will get to that later.) This would have
been obvious even if we had only been given (1) because we could integrate
the expression to recover the function y(z) (since the First Fundamental
Theorem of Calculus guarantees that integration undoes differentiation).

It might appear at this point as though I have led us into a circle of
sorts. If all we are doing is taking expressions with derivatives and being
asked go backwards, we probably immediately have a voice in the back of
our heads telling is that we already learned that process. It was called inte-
gration and was the focus of all of our previous calculus courses (alongside
differentiation).

As we will see, integration is indeed a very important process in the
study of differential equations. All of the integration techniques consid-
ered in previous courses (integration by substitution, integration by parts,
trigonometric substitution, integration of rational functions, etc.) will be
very important in understanding and solving differential equations. These
topics will be considered background knowledge and will not be
reviewed in this course! If you struggled with those topics in your pre-
vious calculus courses, it is very important to review them as soon as you
can. They will be very important throughout this course!

That said, it turns out that integration is not sufficient for solving dif-
ferential equations. To see why this the case, let’s move on to the second
question: how do differential equations arise?

The answer is that many real-world applied phenomena are understood
by their rates of movement (or rate of rate of movement, i.e. acceleration,
etc.). The most readily available example is Newton’s second law of motion,
which says that the force exerted on an object is equal to its mass times it

acceleration, i.e.
F =ma. (2)

We all know that an objections acceleration is the rate of change (i.e. deriva-
tive) of its velocity, which is the rate of change (i.e. derivative) of the object’s
position, so that the acceleration is the second derivative of the object’s po-



sition. In other words, we have

That clarifies the right-hand side of (2), but what about the left-hand side?
Depending on the application, different terms are used to represent the
forces acting on a body. One simple assumption, which is used commonly
in simple models of springs (via Hooke’s law) or pendulums (as a result of
gravity) is to assume that there is a restoring force proportional to the
object’s distance from its resting position. This is common represented as
F(z) = —kx where k > 0. (Notice that if z > 0, i.e. if the object is to the
right of its resting position, then there is a restoring force pushing to the
left; conversely, if x < 0, i.e. if the object is to the left of its resting position,
then there is a restoring force pushing to the right.)
Combining this together into a equation via (2), we have
2 2
a=—ar = i lioo 3)
This is certainly a differential equation (it involves the function z(t) and one
of its derivatives, in this case the second derivative) but it cannot be solved
directly by integration. To see why, recall that in order to integrate we
need to have a function of the independent variable (in this case, t). In this
case, however, we have the unknown function z(¢). We cannot integrate
over t because we do not know what x(t) is! In fact, determining what x(t)
is is exactly what we are trying to ascertain.
Nevertheless, we can still sensibly ask the question of what a solution
to (3) might look like. All we are asking for is to find a function z(t)
which satisfies the expression. It should not take much convincing that

|k
there are several options. The easiest to check are x1(t) = sin < t) and
m

| k
x2(t) = cos ( mt). In fact, any solution of the form
z(t) = Cy sin (\/ kt) + C5 cos (\ / kt)
m m

where C'1,Co € R are arbitrary constants will work. These solutions were
not obtained using integration, however (although we will not get to the
general method which was used for a few weeks yet).



There are many other examples of simple differential equations which
arise from the sciences which cannot be solved directly by integrating, in-
cluding:

e Exponential growth (populations)

dpP
> P
at
e Logistic growth (populations)
dP
— =rP(K—-P
=Pk - P),
e Newton’s law of cooling
dr
E — k(Text - T)a

¢ Restoring plus friction (second-order linear)

d?x dx
—_— — + kz=0.
p7e) +Tdt +kx=0

This gives us some sense of the kind of question we are going to be inter-
ested in during this course. We are going to be interested in the following
questions:

1. Given a differential equation, is there a solution (i.e. a function which
satisfies the expression)? And if so, how can we find it?

2. What other kind of applications give rise to differential equations, and
what do those differential equations look like?

3. How do we interpret solutions to differential equations in the context
of the governing equations and/or the original physical motivation for
them?

2 Notation

It is important first of all to clarify the different notations and terminologies
which will be used through the differential equations portion of this course.



The first thing to recognize is that derivatives can and will be represented
in a number of different manners. We will have the following equivalent
representations for first-order derivatives:

dy , .
—_— = €Tr) = .
2y =Y () =9
Similarly, second-order derivatives will have the equivalent representations:
d2y " ..
_— = €Tr) = .
2 =Y () =79

Where space is no concern, it will be common to use the long-form notation
first presented. When many derivatives are present and the independent
variable (i.e. z in the above expressions) is assumed, we will favour the
latter ‘dot’ expression. The general notation for an nth-order derivative will
be:

"y =y (2).

dx™

This will allow us to write the notion of what a differential equation in

a standard way. In general, the differential equation we will be considering

in this class can be written

fly(@),y (@), g™ (@) = 0.

A differential equation is said to be in standard or normal form if it is
written

y " (z) = fz,y(2),y (@),...,y" V(@)
where n is the highest-order derivative appearing in the expression.
Example 1: The first-order differential equation
dy
+—==0
W e
can be rewritten in the normal form
dy _
doe

by solving for the first-order derivative. By contrast, the first-order differ-
ential equation

—xy

cannot be rewritten in normal form since the first-order derivative cannot
be isolated.



3 Classification of Differential Equations

Many of the tricks we develop for analyzing and solving differential equations
over the next four to five weeks will depend on which broad classification of
differential equation they belong to. It is important, therefore, to get the
distinctions between these kinds of differential equations understood as soon
as possible.

Consider the differential equation

flay(@),y (@), y" (@), ...y (2)) = 0. (4)

We will say that (4) is:

1.

n" order (or n'"* degree) if the highest order derivative appearing in
(4) is nt" order.

. Linear if f is linear in y(x) and all of its derivatives. We can write

linear differential equations as

An(2)y™ (2) + Ap_1(2)y" V(@) + - -

, B (5)
e Ay (2)y (2) + Ao(z)y(z) = g(2)

where the A;(z), i = 0,...,n, and g(z) are allowed to be non-linear
in the independent variable x. Otherwise, we will say that (4) is non-
linear.

Autonomous if f does not depend explicitly on z, i.e. if
flay(@),y (@), y" (@), ...,y (@) = Fy(@), ¥ (@), 9" @),....y" (@)).
Otherwise, we will say (4) is non-autonomous.

Homogeneous if f does not have any terms which do not depend on
y(x) and its derivatives, i.e. if

f(z,0,0,...,0) = 0.

Otherwise, we will say (4) is non-homogeneous.

Notes:

1.

Equations of the form (4) are called ordinary differential equa-
tions because they depend on derivatives with respect to only a single
independent variable (z, in our case). This distingishes them from



partial differential equations which are equations involving deriva-
tives with respect to two or more independent variables. The non-
dimensionalized heat equation

ou 0%

ot 0a?
is a standard example of a partial differential equation (because there
are derivatives which depend on ¢ and x). (We will consider only or-
dinary differential equations in this course but it is still important to
be able to distinguish between ordinary and partial differential equa-
tions!)

2. Linearity excludes terms like 32, sin(7), or even y - ¢. Basically, wher-
ever an y or any of its derivatives appears in the equation, it must be
separated from any other y terms. It is, however, allowed to have
terms with z’s attached to it! For example, a term like ysin(z)
does not violate linearity of the DE even though the term sin(z) is not
linear in z.

3. Autonomous systems do not depend explicitly on the independent vari-
able. When the independent variable is time, these kind of differential
equations commonly arise in physical systems (e.g. gravitation laws,
electrical/magnetic force fields, pendulums swinging, etc.).

4. Homogeneous systems may depend on the independent variable (in
our case, x) but have no “stray” terms involving it. In systems where
the independent variable is time, these stray terms typically corre-
spond to some sort of external time-dependent forcing (e.g. shaking a
pendulum, imposing an electrical current, etc.).

Examples: Classify the following differential equations according to
their order, and whether they are ordinary or partial, linear or non-linear,
autonomous or non-autonomous, homogeneous or non-homogeneous.

dy . d*y r d%y o
(a) Ir sin(z)y(z), (b) a2 V@) 0, (c) proln y(z) ==
ou Ou dy® dy .

(d)%-l—afyzo, (e)ﬁ—%y(x):e.

Solution: We have that



(a) is a linear, non-autonomous, homogeneous, first-order ordinary
differential equation,

(b) is a non-linear, autonomous, homogeneous, second-order ordinary
differential equation,

(c) is a linear, non-autonomous, non-homogeneous, second-order ordi-
nary differential equation,

(d) is a linear, autonomous, homogeneous, first-order partial differ-
ential equation (extending the definitions to partial differential equa-
tions),

(e) is a non-linear, non-autonomous, non-homogeneous, third-order
ordinary differential equation.



