
MATH 320, WEEK 2:
Slope Fields, Uniqueness of Solutions,
Initial Value Problems, Separable

Equations

1 Slope Fields

We have seen what a differential equation is (relationship with a function and
its derivatives), what it means to have a solution (a function which satisfies
the relationship), and how differential equations might arise when modeling
real-world phenomena (Newton’s second law F = ma, population growth,
etc.). But how do we interpret the solution of a differential equation in terms
of either the differential equation itself, or the process it is representing?

The simplest answer to this question is to look at the differential equation
itself. Let’s consider a general first-order differential equation of the form

dy

dx
= f(x, y). (1)

By definition, a function y(x) which solves (1) is a function which satisfies
the differential equation, i.e. we are looking for a function for which the
derivative at a point (x, y) is equal to the given function f(x, y) at (x, y).
This is the algebraic interpretation of a solution, but it also naturally leads
to a geometrical interpretation by noticing that the derivative represents the
slope of the function at a given point (x, y) in the (x, y)-plane. We now have
the following intuition about solutions of (1):

At every point (x, y) in the (x, y)-plane, a solution y(x) of (1) must lie
tangent to the straight line with slope f(x, y)!

This suggests the following interpretative trick:

1. Sample a series of points in the (x, y)-plane and determine the value
of f(x, y) at these points.

2. Plot short lines which have the slope of the function f(x, y) at those
points. (Positive slope for f(x, y) > 0, negative slope for f(x, y) < 0,
steeper lines for larger values, etc.)
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This is called the slope field for the system (1) and can be very useful
for interpreting solutions of the expression. There are a few notes worth
making:

• Slope fields will provide the motivation for numerical methods, and in
particular Euler’s method, which we will study in a few weeks. For
now, however, it is enough to know how slope fields and solutions fit
together.

• A necessary ingredient for generating slope field diagrams is that we
are only considering first-order derivatives, since we know these deriva-
tives correspond to the slopes of the solution function at the given
point. Many differential equations, however, are not first-order (e.g.
differential equations arising from Newton’s second law, which are
second-order). Later in the course, we will develop a method for look-
ing at higher-order differential equations as a system of first-order
differential equations. This will allow us to carry over the intuition
offered by slope fields, although at the expense of increasing the di-
mension of the system.

Example 1: Show that y(x) = kex is a solution of
dy

dx
= y for all k ∈ R.

Draw the slope field in the (x, y)-plane and plot a few solutions.

Solution: We have trivially that

dy

dx
=

d

dx
[kex] = kex = y

It only remains to interpret this result.
To draw the slope field, we notice that f(x, y) = y implies that the slopes

are independent of x (the system is autonomous). This means we need only
consider the value of y. For points with a large y value, the slope will be very
steep and positive; for points with a small positive y value, the slope will
be shallow and positive. Similar arguments hold for negative y values. In
the end, we have the picture give in Figure 1. We can see that any solution
y(x) = kex, k ∈ R, satisfies the intuition that it lies tangent to the slope
field at every point.

Example 2: Show that y(x) = tan(x+ C) is a solution of
dy

dx
= 1 + y2

for all C ∈ R. Draw the slope field in the (x, y)-plane and plot the solution.
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Figure 1: Slope field of
dy

dx
= y with the solutions y1(x) = (1/10)ex, y2(x) =

ex, y3 = 10ex, etc., overlain. Any solution of the form y(x) = kex, k ∈ R,
satisfies the differential equation.

Solution: On the left-hand side, we have

dy

dx
=

d

dx
[tan(x+ C)] = sec2(x+ C).

On the right-hand side, we have

1 + y2 = 1 + tan2(x+ C) = sec2(x+ C).

It follows that y(x) = tan(x+ C) is a solution.
To draw the slope field, we have f(x, y) = 1 + y2 and notice, once again,

that x does not factor in the slopes. We have that the arrows are very steep
and positive for very large y, very steep and positive for very negative y,
and have a minimal steepness of one when y = 0 (i.e. along the x-axis). If
we are careful, we should arrive at a picture looking like Figure 2.

2 Initial-Value Problems

We have seen that differential equations can, in general, given rise to multi-
ple solutions. This should be reasonable disconcerting at first glance. After
all, we imagine differential equations as representing some sort of physical
phenomenon, and when we throw a projectile, or release a pendulum, or con-
nect an electrical circuit, we do not observe multiple solutions. We observe
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Figure 2: Slope field of
dy

dx
= 1 + y2 with the solution y(x) = tan(x) overlain.

exactly one. So how do we resolve the mathematical peculiarity of multiple
solutions with the physical observation that only one thing can happen at a
time?

The answer is that we define the differential equation together with the
relevant initial conditions.

Definition 2.1. The initial-value problem (IVP) associated with a first-
order differential equation is the problem of solving

dy

dx
= f(x, y), subject to y(x0) = y0

where x0, y0 ∈ R.

There are a few notes worth making here:

• The terminology initial-value is chosen to reflect the reality that we
are usually interested in centering the problem at zero (i.e. setting
x0 = 0). In problems where time is the independent variables, we have
t0 = 0, which is truly the initial value. We can, however, choose x0
equal to another value (e.g. conditions like y(3) = −7 or y(−1) = 10).

• The initial-value problem corresponds to picking the single trajectory
which goes through the point (x0, y0) in the slope field diagram! We
now know exactly how to fill out the slope field diagram with solutions.
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• In general, we need as many initial conditions as we have constants in
the general solution. For second-order differential equations, we will
typically need two initial conditions, one on the variable itself, and
one on the derivatives. For instance, for gravitational force problems
where x(t) is the height of an object, we need

d2x

dt2
= −g, subject to x(t0) = x0,

dx

dt
(t0) = v0

to fully determine the solution to the initial value problem.

• A solution to a differential equation is called a general solution if
it encapsulates all possible solutions to the corresponding initial-value
problems. A solution is called a particular solution if it is associated
to a specific initial value problem.

Example 3: Solve the initial value problem

dy

dx
= y, y(0) = 3.

Solution: We already know that the general solution of the differential
equation is y(x) = kex where k ∈ R. It only remains to consider the initial
condition y(0) = 3. Plugging in x = 0 gives us

y(0) = 3 = ke(0) =⇒ k = 3.

It follows the the particular solution we are interested in is y(x) = 3ex.

Example 4: Consider a projectile thrown up into the air from the top
of a cliff which is 50 meters from the ground. Suppose the projectile is sub-
ject only to the force of gravity (F = −mg = −9.8m meters/second2) and
suppose the initial upward velocity of the throw is 10 m/s. Solve the initial
value problem. How long does it take the projectile to reach the bottom of
the cliff?

Solution: From Newton’s second law, we have that F = ma so that

−mg = m
d2x

dt2
.

With the given information, and removing the dimensions (which fortunately
do match up) we can restate this as an initial value problem as

d2x

dt2
= −9.8, x(0) = 50,

dx

dt
(0) = 10.
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This can be directly integrated to get

dx

dt
=

∫
d2x

dt2
dt = −

∫
9.8 dt = −9.8t+ C.

We can now use the first piece of initial information to get

dx

dt
(0) = 10 =⇒ 10 = −(9.8)(0) + C =⇒ C = 10.

It follows that we have
dx

dt
= −9.8t+ 10.

We can integrate this again to get

x(t) =

∫
dx

dt
det =

∫
(−9.8t+ 10) dt = −4.9t2 + 10t+D.

The other piece of initial information gives us

x(0) = 50 =⇒ 50 = −4.9(0)2 + 10(0) +D =⇒ D = 50.

It follows that the solution to the initial value problem is

x(t) = −4.9t2 + 10t+ 50.

As we might have expected, this is a parabola opening down. The ver-
tex corresponds to the maximum height before it starts its descent to the
ground. To answer the final question, we recognize that reaching the ground
corresponds to setting x = 0. It follows that we need to find a time such
that

−4.9t2 + 10t+ 50 = 0.

The quadratic formula gives the solutions t = −2.33 and t = 4.37. We can
reject the negative value since it occurs before we release the projectile and
conclude that the projectile will reach the ground in 4.37 seconds.

3 Existence and Uniqueness of Solutions

So far we have developed an intuition on what it means to be a solution of
a differential equation, how to check if a function is in fact a solution, and
how to interpret solutions geometrically. We have not, however, given any
consideration to the following more basic questions:
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1. Does a solution always exist? (i.e. Given an arbitrary function in-
volving y(x) and its derivatives, are we guarantee that a function y(x)
satisfying the equation exists?) And if it exists, does it exist over the
whole domain of the independent variable (usually x in our case)?

2. If we have a solution, is it necessarily unique? (i.e. Can solutions
overlap?)

In other words, we may ask questions on the existence and uniqueness of
solutions. This is a significant aspect of the theoretical study of differential
equations, especially for equations when the solutions are difficult to find.
We will not spend much time on these problems, instead choosing to gain
some intuition about what may happen by considering some representative
examples.

The question of existence is perhaps the simplest to resolve. We will
consider two examples.

Example 5: Determine a solution of(
dy

dx

)2

+ y2 = −1

or argue for why no solution exists.

Solution: There is no function y(x) which satisfies it since the left-hand
side of the expression is always positive, while the right-hand side is always
negative. In this case, we do not even need to attempt to find a solution in
order to know one does not exist, so the answer in this case is a definitive
no, differential equations are not guaranteed to have a solution.
(Although most of the differential equations we will consider in this course
will have solutions!)

Example 6: We know that y(x) = tan(x) is a solution of y′ = 1+y2. We
might, however, notice something strange about it: it is not connected!
That is to say, as we are travelling along the solution, we encounter a rather
abrupt jump when we hit π/2. We switch instantaneously from +∞ to −∞.
This is not a significant concern to our mathematical analysis (everything
we have done is correct!) but it might be a concern to the physical problem
were are modeling. For instance, suppose we are modeling the position of
some object—we cannot very well have the object explode to infinity and
wrap around the other side, even though this is what the math tells us hap-
pens. In applied examples we will be careful to consider only connected (i.e.
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continuous) portions of solutions, lest we run into such absurdities.

To answer the question of uniqueness, let’s look again the slope fields for
Examples 1 and 2. We saw at first glance that the differential equations had
an infinite number of solutions, but that this was resolved by considering
initial conditions. If we specified a particular point (x0, y0) in the (x, y)
plane, then the initial condition through (x0, y0) corresponded to a single
solution. But is this always guaranteed to be the case? Are solutions to
IVPs always unique, or can different solutions overlap at a point (x0, y0)?

Example 7: Show that, for any C ∈ R,

y(x) =

{
0, x ≤ C
(x− C)2, x > C

is a solution of
dy

dx
= 2
√
y. Comment on the uniqueness of solutions.

Solution: We have that y = 0 implies
dy

dx
= 0 and

√
y = 0 trivially so

y = 0 always satisfies y′ = 2
√
y. To the other half of the proposed solution,

we have
dy

dx
= 2(x− C)

and
2
√
y = 2

√
(x− C)2 = 2|x+ C| = 2(x− C)

where we have removed the absolute value because x > C implies x − C,
which implies |x−C| = x−C. It follows that both halves of the expression
satisfy the differential equation, and since we have continuity and equality
in derivatives at x = C, the function is smoothly defined at the transition.
It follows that it is a solution.

We notice something a little strange when we try to consider the slope
field, however (see Figure 3). The solution is a constant (y = 0) to the left
of C and the right-half of a parabola to the right of C, but when does the
transition happen? Suppose we are the point (0, 0) and are travelling along
the solution y = 0 to the right. How do we choose when we branch off to
the parabola? Or even if we do? We have that y = 0 is always a solution,
after all, so why even both considering the parabolic answer?

The problem is that solutions overlap. That is to say, they are not
separated, as they were in the previous examples. Every solution with C ≥ 0,
for instance, goes through the point (0, 0). So not only can we have solutions
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be non-unique due to the existence of a family of solutions, we can have them
be non-unique when we restrict to solutions through a single point in the
solution space as well (although this is uncommon!).

We might wonder what conditions we require of an initial-value problem
in order to guarantee the existence of a unique solution. The answer is
that we are guaranteed to have a unique solution through a point (x, y)

if
∂f

∂y
(x, y) is continuous at (x, y) (Theorem 1, page 24 of text). For our

example, we have
∂f

∂y
(x, y) =

1
√
y

which is discontinuous when y = 0. This is why solutions were allowed
to bunch at y = 0! (The theory behind this point will not be too impor-
tant in this course, but do understand the condition for uniqueness and the
interpretation of it.)

x

y y(x)=(x+C)2

Figure 3: Slope field of
dy

dx
= 2
√
y with y = 0 and the right-halves of y1(x) =

(x + 2.5)2, y2(x) = x2, and y3 = (x − 2.5)2 overlain. Every solution with
C > x goes through the point (x, 0) so that solutions intersect.

4 Separable Equations (1.4 in text)

So far we talked a great deal about solutions of differential equations—how
to verify them, what properties they may have—but we have given very
little thought to real big question: how to we find them?
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Over the next few weeks, we will encounter a few specific forms which
we will be able to solve by exploiting certain “tricks”. The first of those,
and easiest to identify, is separable differential equations.

To motivate this class of equations, consider the example

dy

dx
=

1− y
x

.

Because the right-hand side depends on both x and y, we cannot integrate
this directly with respect to x to determine the general solution. We will be
need to be a little sneakier. In this example, we might notice that we can
still make the problem “look like” an integration problem with respect to x
by removing the y from the right-hand side and moving the differential dx
to the other side. This leaves us with

dy

1− y
=
dx

x
.

Now, not only does the right-hand side look like an integral question (with
respect to x), but the left-hand side looks like an integral question as well
(with respect to y). In fact, that is exactly how we will treat the equation!
If we integrate (with respect to y on the left, and x on the right), we obtain∫

1

1− y
dx =

∫
1

x
dx =⇒ − ln |1−y| = ln |x|+C =⇒ |1−y| = e−C

|x|
.

Setting k = e−C > 0, we have that |1− y| = k

|x|
. There are a few technical

details to sort out yet with the absolute value. We have the following four
cases:

y > 1, x > 0 =⇒ −(1− y) =
k

x
=⇒ y = 1 +

k

x
, k > 0

y > 1, x < 0 =⇒ −(1− y) = −k
x

=⇒ y = 1− k

x
, k > 0

y < 1, x > 0 =⇒ (1− y) =
k

x
=⇒ y = 1− k

x
, k > 0

y < 1, x < 0 =⇒ (1− y) = −k
x

=⇒ y = 1 +
k

x
, k > 0

Recognizing that y = 1 (i.e. k = 0) is a trivial solution, we have that the

sign of k does not actually matter. The general solution is y = 1 +
k

x
for

k ∈ R. (This can be easily checked!)

There are a few notes worth making:
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• The general trick we have performed is to separate all of the depen-
dence on y on one side of the expression and all of the dependence on
x on the other. Such differential equations are called separable and
have the general form

f(y)
dy

dx
= g(x) or f(y) dy = g(x) dx.

• While everything “looks” good, we have been very lax in our jus-
tification of this separation (i.e. in “splitting” the differential, and
integrating with respect to separate variables on the separate sides).
A rigorous justification, depending on a rigorous application of the
chain rule, is given in Section 1.4 of the text.

• All of the examples consider in this set of notes so far can be solved
by separating the variables.

• It may seem pedantic, but it is actually important that we remember∫
1

x
dx = ln |x|+ C

and not just ln(x) + C. Solutions defined over the negative orthant
will be excluded if we do not consider |x|. The standard tricks for
handling absolute values (i.e. considering cases) will apply.

• I warned you that integration would be important for solving differen-
tial equations, and there is no class of systems that better exemplifies
that than separable equations. Not only do we have to integrate to
solve a separable equation, but in general we have to integrate twice.

Further examples are contained Section 1.4 of the textbook.
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