
MATH 320, WEEK 4:
Exact Differential Equations, Applications

1 Exact Differential Equations

We saw that the trick for first-order differential equations was to recognize
the general property that the product rule from differentiation yields, as if
by design, a form that looks like a first-order linear equation. That is to say,
we have

d

dx
[f(x)y] = f(x)

dy

dx
+ f ′(x)y.

This certainly looks like a first-order linear differential equation—all we have
to do is set this equation equal to something (potentially a function of x)
and we are good to go. When we investigated these problems from the
other direction, trying to reverse the product rule, we recognized that we
were always able to do so after (potentially) multiplying by an appropriate
integration factor.

We might realize that there is another differentiation operator which
produces a very similar form. If we consider a general function F (x, y),
recognizing the dependence of y of x, we have from the chain rule that

d

dx
[F (x, y)] =

∂F

∂x
+
∂F

∂y

dy

dx
.

This certain looks like a first-order differential equation. The difference
is that Fx(x, y) and Fy(x, y) are allowed to be functions of both x and y.
Worst still, they are allowed to be nonlinear functions of y. At any rate, this
forms a general class of differential equations known as exact differential
equations. They have the general form

M(x, y) +N(x, y)
dy

dx
= 0 (1)

where M(x, y) = Fx(x, y) and N(x, y) = Fy(x, y) for some function F (x, y).
They are also commonly written

M(x, y)dx+N(x, y)dy = 0.

There are a few notes worth making:
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• Exact differential equations are not generally linear. In other words,
this is a method for solving first-order nonlinear differential equations.

• The general solution for an exact equation is the implicit form F (x, y) =
C.

• Although this is a distinct class of differential equations, it will share
many similarities with first-order linear differential equations. Impor-
tantly, we will discover that there is often (although not always!) an
integration factor required to make a differential equation in the “ex-
act” form. This integration factor will take a different form than that
of first-order linear equations.

• The textbook does not consider integration factors for exact equations
(presumably due to space concerns). That’s their loss!

The question then becomes, if we have a general differential equation of
the form (1), how do we know if it is exact? The answer comes to us from
recognizing the equality of mixed-order partial derivatives. For a general
twice differentiable function F (x, y), we have

∂2

∂y∂x
F (x, y) =

∂2

∂x∂y
F (x, y) =⇒ ∂

∂y
Fx(x, y) =

∂

∂x
Fy(x, y)

=⇒ ∂M

∂y
=
∂N

∂x
.

It can be shown that this is a necessary and sufficient condition for exactness
(see Theorem 1 on page 70 of the text). This is an easy check, but it will
not tell us how to find the general solution. For that, we consider an example.

Example 1: Show that the following differential equation is exact and
use this observation to find the general solution:

(4xy1/2)dx+

(
x2

y1/2
+ 2

)
dy = 0.

We have M(x, y) = 4xy1/2 and N(x, y) =
x2

y1/2
+ 2. The required condi-

tion for exactness is easy to check:

∂M

∂y
=

2x

y1/2
=
∂N

∂x
.
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It follows that the equation is exact and, consequently, that there is a solu-
tion of the form F (x, y) = C. It remains to find the solution. How might
we accomplish this?

The key is to notice that the differential equations give rise to the system
of equations

∂F

∂x
= M(x, y) = 4xy1/2

∂F

∂y
= N(x, y) =

x2

y1/2
+ 2.

This can be solved by integrating either expression by the respective variable
of the partial derivative. The first expression gives

F (x, y) = 2x2y1/2 + g(y)

where we have to include an arbitrary function of y (i.e. the g(y)) because
partial differentiation with respect to x would eliminate such a term. We
now solve for g(y) by taking the derivative of F with respect to the other
variable, y. We have

∂F

∂y
=

x2

y1/2
+ g′(y).

We can see by comparing this equation with the previous system that we
need to have g′(y) = 2. It follows that g(y) = 2y + C so that the general
solution is

2x2y1/2 + 2y = C.

It is worth making a few notes on this process:

• It is important to remember that integrating a partial derivative re-
quires us to add an additional term of the other variable.

• It is a general property that the solution will only be represented in
implicit form. In other words, do not worry too much about solving
for y in the final steps.

Now consider being asked to solve the differential equation

(4xy)dx+ (x2 + 2y1/2)dy = 0.

We notice immediately that this is just the previous example multiplied
through by y1/2. We suspect that this equation has the same solutions, and
the same methods will apply, but we can see that

∂M

∂y
= 4x 6= 2x =

∂N

∂x
.
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In other words, the equation is no longer exact! This is a problem. We only
know how to solve equations of this form if they are exact. We seem to be
stuck.

The resolution comes by recognizing where the difference between the
two equations came. We can change this expression into an exact form by
dividing through by y1/2 (or multiplying through by y−1/2, if you prefer).
It should be clear then that—just as with first-order linear equations—
sometimes we will need to multiply through by some factor (also called
an integration factor!) in order to get the equation in the form we can
use.

We might wonder if all equations of the form (1) can be made exact by
multiplication by an integration factor. This was what happened for first-
order linear differential equations, so it is not an unfair question. The answer
in this case, however, is unfortunately a pronounced NO. There are many
differential equations of the form (1) which cannot be manipulated so that
they are exact. The question then becomes, which differential equations can
be? Are there are conditions which guarantee a differential equation of the
form (1) can be made exact by multiplication by an appropriate integration
factor? And, if so, what is that integration factor?

The answer to these last questions is a fortunately YES. We have the
following conditions and associated integration factors:

Proposition 1.1. Consider a general differential equation of the form (1).
Then:

1. If R(x) =

(
∂M

∂y
− ∂N

∂x

)
/N is a function of x alone, then the integra-

tion factor
ρ(x) = e

∫
R(x) dx

will make (1) exact.

2. If R(y) =

(
∂N

∂x
− ∂M

∂y

)
/M is a function of y alone, then the inte-

gration factor
ρ(y) = e

∫
R(y) dy

will make (1) exact.

We will not justify these forms (although it is a good exercise!). Let’s
consider how they work for our specific example.

We need to check one or the other of the above conditions. We have

∂M

∂y
= 4x and

∂N

∂x
= 2x.
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To check whether the first condition is satisfied, we compute(
My −Nx

N

)
=

(
4x− 2x

x2 + 2y1/2

)
=

(
2x

x2 + 2y1/2

)
.

Since this is not a function of x alone, the first condition fails and we are
not allowed to construct an integration factor out depending on x.

Now consider the second condition. We have(
Nx −My

M

)
=

(
2x− 4x

4xy

)
= − 2x

4xy
= − 1

2y
.

Since this is a function of y alone, we are allow to construct an integration
factor out of it. Setting R(y) = −1/(2y), we have

ρ(y) = e
∫
R(y) dy = e

−
∫

1
2y

dy
= e−

1
2
ln(y) =

1

y1/2
.

This is exactly integration factor we expected! Multiplying through the
expression by ρ(x) = y−1/2 gives

(4xy1/2)dx+

(
x2

y1/2
+ 2

)
dy = 0.

This is the earlier expression, which we have already shown in exact, and
for which we already know the solution! The only trick was determining an
appropriate integration factor. It took a little more work than in the case
of linear first-order differential equations, but nevertheless we were able to
accomplish the task.

There are a few notes worth making:

• We may (once again) exclude constants and absolute values in the
integration required to determine the form of the integration factor.

• It will be very important to keep the conditions on the variables x and
y straight (though practice!). The key terms are My and Nx, so that
the coefficient of dx has a y derivative taken, and the coefficient of dy
has an x derivative taken. If the wrong derivatives are evaluated, the
methods will not work.

Example: Determine the solution of

y cos(x)dx+ (1− y2) sin(x)dy = 0.
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Solution: We might notice that this equation is separable, but ignoring
that for the time-being, we will treat as an exact (or nearly exact) equation.
To check for exactness, we compute

My = cos(x) 6= (1− y2) cos(x) = Nx.

So that differential equation is not exact. In order to check for an integration
factor, we compute(

My −Nx

N

)
=

(
cos(x)− (1− y2) cos(x)

(1− y2) sin(x)

)
=

(
y2 cos(x)

(1− y2) sin(x)

)
.

This is clearly not a function of x alone, so we may remove it from consid-
eration. The other condition gives(

Nx −My

M

)
=

(
(1− y2) cos(x)− cos(x)

y cos(x)

)(
−y2 cos(x)

y cos(x)

)
= −y.

Since this is a function of y alone, we set R(y) = −y and evaluate the
integration factor

ρ(y) = e
∫
R(y) dy = e−

∫
y dy = e−

y2

2 .

We now multiply the expression through by this term. We have

ye−
y2

2 cos(x)dx+ (1− y2)e−
y2

2 sin(x)dy = 0.

This gives the system of necessary equations

∂F

∂x
= M(x, y) = ye−

y2

2 cos(x)

∂F

∂y
= N(x, y) = (1− y2)e−

y2

2 sin(x).

The obvious choice (I hope!) is to integrate the first expression with respect
to x. We have

F (x, y) =

∫
∂F

∂x
dx = ye−

y2

2 sin(x) + g(y).

Taking the derivative of this with respect to y yields

∂F

∂y
= e−

y2

2 sin(x)− y2e−
y2

2 sin(x) + g′(y) = (1− y2)e
y2

2 sin(x) + g′(y).

Comparing this with the second equation gives g′(y) = 0 so that g(y) = C.
This gives the general (implicit) solution

F (x, y) = ye−
y2

2 sin(x) = C.
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2 Applications - In-Flow / Out-Flow Models

One popular application of differential equations (and in particular, first-
order linear differential equations) is in modeling the amount (or concentra-
tion) of a substance in a well-stirred tank/vessel subject to constant in-flow
and out-flow. Common simple applications are:

• an industrial mixing tank with an entry pipe (pumping the chemical
of interest in) and an exit pipe;

• a lake with a inflow (say, a river) feeding a pollutant from upstream
and an outflow (also, a river) flowing downstream;

• a tub or sink with a steady inflow (say, a faucet) and a steady outflow
(say, a drain).

In all cases, the basic question is the same: If we know the in-flow, and the
out-flow, can we determine what actually happens inside the tank/lake/tub/etc.?

To answer this question, we must translate this description from words
into math. At the most basic level, we believe that

[rate of change] = [rate in]− [rate out].

That is to say, at each instance in time, we believe that the rate of change
of the overall amount of the quantity of interest to equal the amount that is
flowing in minus the amount that is flowing out. The question of character-
izing the dynamics is therefore only a matter of characterizing the in-flow
and the out-flow! Our knowledge of differential equations should handle the
rest.

To characterize the in-flow rate, we need a few pieces of information.
Firstly, we are likely to be given the overall mixture flow rate in, as well as
the concentration of the quantity of interest within that in-flowing mixture.
For example, we might know the amount of water which flows into a lake
every day, or every week, and we might know the concentration of a partic-
ular pollutant within that volume of water. The rate of the amount of the
pollutant flowing in is therefore

[rate in] = [volume in]× [concentration]

since

[volume in]× [concentration in] =

[
volume

time

]
×
[

amount

volume

]
=

[
amount

time

]
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The out-flow is slightly different. Since we are assuming (for simplicity!)
that the tank/lake/tub is well-mixed, we may assume that the concentration
of the quantity of interest is the same everywhere in the tank/lake/tub.
In particular, wherever the outflow is located, and however quickly it is
removing mixture from the tank/lake/tube, we have

[rate out] = [concentration]× [volume out] =
[amount]

[volume]
× [volume out]

since

[amount]

[volume]
× [volume out] =

[
amount

volume

]
×
[

volume

time

]
=

[
amount

time

]
.

The key difference here is that the amount in the above derivation is the
current amount of the quantity of interest. In other words, it is the un-
known function/variable we are trying to model! Another wrinkle is that
the volume is the current volume of the tank. If the volume of the in-flow
and the volume of the out-flow do not balance, the volume of the tank may
not be fixed and may in fact be a function of time (imagine filling a bathtub,
or emptying a mixing tank).

Example 1: Suppose that there is a factory built upstream of Lake
Mendota (volume 0.5 km3) which introduces a new pollutant to a stream
which pumps 1 km3 of water into the lake every year. Suppose that the net
outflow from the lake is also 1 km3 per year and that the concentration of
the pollutant in the inflow stream is 200 kg/km3. Set up an initial value
problem for the amount of pollutant in the lake and solve it. Assuming
there is initially no pollutant in the lake, how much pollutant is there are
one month? What is the limiting pollutant level?

Solution: We need to set up the model in the form [rate of change]=[rate
in]−[rate out]. If we let A denote the amount of the pollutant (in kg), we
have

[rate of change] =
dA

dt
.

In order to determine the rate in, we notice that the amount (in kg) coming
from the inflow can be given by

[rate in] = [volume rate in]× [concentration in]

= (1 km3/year)(200 kg/km3) = 200 kg/year.
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The rate out is given by

[rate out] = [volume rate out]× [concentration out]

= (1 km3/year)

(
A

0.5
kg/km3

)
= 2 kg/year.

We can see the units have worked as desired. We can drop them and just
focus on the initial value problem

dA

dt
= 200− 2A, A(0) = A0.

This is a first-order linear differential equation which in standard form
is given by

dA

dt
+ 2A = 200.

We can see that we have p(x) = 2 and q(x) = 200. The necessary integration
factor is

ρ(t) = e
∫
2 dt = e2t

so that we have

e2t
dA

dt
+ 2e2tA = 200e2t

=⇒ d

dt

[
e2tA

]
= 100e2t

=⇒ e2tA = 100e2t + C

=⇒ A(t) = 100 + Ce−2t.

In order to solve for C, we use A(0) = A0 to get

A(0) = A0 = 100 + C =⇒ C = A0 − 100.

This gives the solution

A(t) = 100 + (A0 − 100)e−2t.

For this form, we can easily answer the stated questions. Given an initial
pollutant level of zero (i.e. A0 = 0), we have

x(t) = 100− 100e−2t.

After one month has passed, we have t = 1/12 so that the amount of pollu-
tant is given by

x(1/12) = 100− 100e−2(1/12) ≈ 15.3528 kg.
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We can also easily determine the limiting pollutant level by evaluating

lim
t→∞

x(t) = lim
t→∞

[
100 + (A0 − 100)e−2t

]
= 100.

In other words, no matter what the initial amount is in the lake, we will
always converge toward 100 kg of pollutant distributed throughout the lake.
(This should make some sense. We imagine that the limiting level is going
to be when the rate in and the rate out are balanced. That occurs for this
model when 200 = 2A which implies A = 100.)

Example 2: Consider a 50 gallon tank which is initial filled with 20
gallons of brine (salt/water mixture) with a concentration of 1/4 lbs/gallon
of salt. Suppose that there is an inflow tube which infuses 3 gallons of brine
into the tank per minute with a concentration of 1 lbs/gallon. Suppose that
there is an outflow tube which flows at a rate of 2 gallons per minute. Set
up and solve a differential equation for the amount of salt in the tank. How
much salt is in the tank when the tank is full?

Solution: This is slight different than the previous example because
the volume of mixture in the tank changes because the inflow and outflow
volume rates are different. There is more mixture flowing into the tank than
flowing out. Nevertheless, we can incorporate this into our model by noting
that the volume of the tank at time t can be given by

V (t) = 20 + (3− 2)t = 20 + t.

We can now complete the model as before. We have

dA

dt
= (3)(1)− (2)

A

20 + t
= 3− 2A

20 + t
, A(0) = 20(1/4) = 5.

Again, this is a first-order linear differential equation. We can solve it by
rewriting

dA

dt
+

(
2

20 + t

)
A = 3

and determining the integrating factor

ρ(t) = e
∫
2/(20+t) dt = e2 ln(20+t) = (20 + t)2.
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This gives

(20 + t)2
dA

dt
+ 2(20 + t)A = 3(20 + t)2

=⇒ d

dt

[
(20 + t)2A

]
= 3(20 + t)2

=⇒ (20 + t)2A = (20 + t)3 + C

=⇒ A(t) = (20 + t) +
C

(20 + t)2
.

Using the initial condition A(0) = 5, we have

A(0) = 5 = 20 +
C

400
=⇒ C = −6000

so that the particular solution is

A(t) = (20 + t)− 6000

(20 + t)2
.

To answer the question of how much salt will be in the tank when the
tank is full, we notice that the tank will be full when V (t) = 20 + t = 50,
which implies t = 30 (i.e. it will take thirty minutes). This gives

A(30) = (20 + 30)− 6000

(20 + 30)2
= 50− 6000

2500
= 47.6.

It follows that there will be 47.6 lbs of salt in the tank when it is full.
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