MATH 320, WEEK 5:
Numerical Approximation

We may feel pretty optimistic regarding our abilities to solve first-order
differential equations at this point, but we have generally been operating so
far under the assumptions that (a) solutions exist; and (b) if they exist, we
can find them.

d
Now consider the example d—y =22+ (Example 5, page 120 of text).
x

Our toolbox of differential equation solving methods is pretty small so far,
but it is growing. As we go through the tools we have accumulated so far for
this example, however, we quickly find ourselves frustrated. This differential
equation is not directly integrable, it is not separable or first-order linear, it
is not (power) homogeneous or Bernoulli, and there is not integrating factor
to make it exact. Nothing we have learned so far will help us.

We should not be surprised to learn that there are first-order differen-
tial equations which cannot be solved by the elementary methods we have
developed so far. In fact, most differential equations used in the applied sci-
ences do not have solutions which can be represented in terms of elementary
functions (e.g. z", sin(x), cos(x), €*, In(z), etc.). The differential equation
considered above, for instance, only has solutions which can be represented
in terms of Bessel functions. (Bessel functions will not be covered in this
course, but to get a sense of how non-elementary the required functions can
get, this class of functions can only be represented as an infinite series of
(potentially non-integer) powers of x!)

Our interest in differential equations does not stop when we fail to be
able to solve them, however. Our existence theorem guarantees that solu-
tions exist through every point (z,y) where f(z,y) is continuous, which is
everywhere for this differential equation. In other words, we know a solution
exists! We need to find a way to characterize this solution given that we
cannot analytically solve the differential equation.

This seems like an insurmountable task at first glance, but reconsider
the slope field diagram idea from a few weeks ago. Our intuition then was
that the value of f(z,y) at (z,y) corresponded to the slope of the particular
solution y(z) through the point (z,y) at the point (z,y). If we graphed a
representative sample of slopes (drawn as short lines) in the (z,y)-plane,
we could get a good sense of what solutions must look like. We were able
to correspond the analytic solutions for several examples to their slope field
diagrams.



We notice at this point that, even though we cannot (easily) find the

d
solution y(z) of d—y = 22 4+ 42, it is still relatively easy to construct a slope
x

field diagram. We could create a table of values for f(z,y), or just notice
that f(x,y) > 0 and the steepness of the slope lines grows as we travel along
circles radiating out from (0,0). (That is to say, we have a curve of points
with the same slope along the circles z2 + 32 = C.) If we are careful, we
eventually arrive at the slope field picture given in Figure 1(a).
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Figure 1: (a) Slope field diagram of ik +y~. (b) Slope field diagram

x

with solutions.

Even though we do not have access to an analytic solution for this dif-
ferential equation, we can get some sense of what any solution must look
like. All we have to do (essentially) is connect the lines! It does not take
long to come up with a picture that looks something like Figure 1(b).

This process is good for visualization, but it is not rigorous. For instance,
consider asking a question like: given the initial value y(0) = 0, what is the
value of the solution through this point at x = 1?7 We would certainly look
at our slope field diagram, find the solution through (0,0) and guess where
that curve is going to be when z = 1, but we would like to do better.

To consider how we might approach this problem, let’s consider the slope
field diagram in more depth. We have the following intuition:

1. The slope at a point (z,y) agrees locally with the trajectory through
the point.

2. A trajectory agrees with the slopes of the arrows at every point it



passes through.

This leads us to the following intuition: If we start at a given point
(x0,Y0), locally the solution through that point agrees with the solution
along the line given by the slope of the arrow. Imagine moving straight
along the line at slope f(xo,yo) by a small increment in Az. This gives us
a new point (z1,y1). At this point, the value of f(x,y) has changed, but
so long as the initial increment was small we imagine it has not changed
much. So let’s continue this process! If we take small increments in z (say
0 < Az < 1) we imagine each step forward in the state space is not far away
from the analytic trajectory corresponding to the same initial condition (see
Figure 2).
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Figure 2: The forward Euler method traces out a solution by jumping for-
ward in increments of Az along arrows of the slope field diagram.

This method is called the forward Euler’s method and is given explicitly
by the formula

Yn+l = Yn + f(xnv yn)Ax‘ (1)

This formula corresponds exactly to the intuition was offered above. At
a point (Z,,y,), we compute the next state (z,41,Yyn+1) by updating the
current point by the slope of the vector field at that point (f(zy,yn)) over
a small increment (Az). We then repeat the process. This is a form of
numerical approrimation.



For our example, we have the update scheme y,,11 = yn + f (20, yn) Az =
yn + (22 +y2)Az and 2,1 = =, + Az. Choosing Az = 0.1 and (x9,y0) =
(0,0), we have

y1 = yo + (2§ +y3)Az = (0) + ((0)* + (0)*)(0.1) = 0.

We also have that 1 = xo+Az = (0)4(0.1) = 0.1 so that (z1,41) = (0.1,0).
Applying the procedure again, we have

yo =y + (22 + y2) Az = (0) + ((0.1)2 + (0)2)(0.1) = 0.001.

It follows that (z2,y2) = (0.2,0.001). Continuing this procedure, we arrive
at the following table of values:

Tn Yn
0 0
0.1 0
0.2 0.001

0.3 | 0.0050001

0.4 | 0.0140026

0.5 | 0.030022207
0.6 | 0.05511234
0.7 | 0.091416077
0.8 | 0.141251767
0.9 | 0.207246973
1.0 | 0.292542104
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These values represent a numerical solution. They are the analogue of
plugging specific x values into our solution form y(x). Of course, for this
example, we do not have a solution form y(z) so this is as good as we can
do.

There are several very important notes worth making about this proce-
dure:

1. Beyond a few iterations, this is not a process we want to do by hand.
Computers are a necessity, and they are very good (and getting better
and better) at numerically integrating solutions. As computers have
become more wide-spread (last fifty years), the emphasis in applied
mathematics has shifted significantly toward numerical integration, to
the point where it is currently probably the most significant approach
taken in the field.



2. It is nice to have a numerical updating scheme, but we have not in-
vestigated how closely the numerical solution approximates the actual
solution. This is a big concern! Each step in the process has a error
associated to it, so how do we guarantee after hundreds or thousands
of iterations that the numerical solution is any good? Even if each
step has a small error, how do we guarantee the cumulation of these
errors is small? We will not investigate these concerns in too much
detail, but we will make the following notes about ways to increase
accuracy:

(a) Choose a small time step Ax.

(b) Choose a better numerical scheme (forward Euler is excellent for
an accessible introduction to the topic, but terrible for bounding
the accumulation of errors).

3. Numerical integration has two significant drawbacks when it comes to
model analysis: (1) It requires a specified initial condition, and (2)
it requires specified parameter values. In other words, it can suggest
whether a model permits certain behavior (e.g. growth/decay/stability,
oscillations, etc.) but can only do so for one particular solution at a
time. Analytic solutions, if they can be found, are more insightful
because they can consider all of this information at the same time.

4. (Not essential to know this for tests!) There is more than one way to
derive the forward Euler formula. Consider the following three set-ups:

(a) We are attempting to model the trajectory y(z) satisfying y/(z) =
f(x,y). Consider the first-order Taylor series expansion of the
trajectory at the point z + Az (assuming 0 < At < 1). We have

y(z + Az) = y(z) + /' (z) Az + O(Az?)
= y(x) + f(z,y(z))Az + O((Ax)?).

Ignoring the terms of order (Az)? and higher, this justifies the
update scheme (1).

(b) We are assuming that the derivative of the solution is given by
y'(z) = f(x,y(z)) so, by definition, we have

e+ AT) — y(2)
Az Ax

= [z, y(x)).



If we take Ax small enough, we have

y(z + Ax) —y(x)
Az
This justifies (1).

(¢) We could also notice that the equation y'(z) = f(x,y(z)) can be
integrated to give

~ f(z,y(x)) = ylz+Az) =y(@)+f(2,y(z))Az.

[v@ ar=[ s as

— y(2) - y(0) = /0 " F(s,y(s)) ds

— y(x) = y(0) + /0 " f(s,y(s) ds.

It remains to determine a numerical integration method for the
integral on the right-hand side. We recall that integrals corre-
spond to areas, so this just amounts to approximating the area
under the curve f(s,y(s)) from s = 0 to s = z. The easiest choice
is the rectangular rule, which just approximates the area with a
rectangle the width of the interval and the height given by one of
the endpoints. In this case, we can choose

/0 " f(s.y(s) dr ~ fla,y(@) A

which justifies the form (1).

It remains to consider how this formula actually performs. Consider the
following example.

Example 1: Consider the initial value problem

dy _

- 0) = 1.
il y(0)

We know that this system has the unique solution y(x) = e* but how close
does the numerical solution come to it?

Let’s consider the interval x = 0 to x = 5. Consider taking the step size
Az = 1 (that is to say, bumping the solution forward a full unit in each
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Figure 3: The forward Euler scheme with Az =1 (red), Az = 0.1 (green)
and Az = 0.01 (blue). As the time-step decreases in size, the accuracy of the
estimate to the true solution y(z) = e® increases, at the expense of needing
greater computation resources (although all simulations ran in a fraction of
a second on my laptop).

update). This necessitates taking n = (2 final — Tinitiar)/ Az = 5 updates.
This gives the sequence of poins:

Ynt1 = Yn + f(Tn, yn) Az = yp + yn(l) = 2yn

yo=1
y1 =2
y2 =4
ys =38
ys = 16
ys = 32.

That is to say, our numerical scheme has told us that y(5) ~ 32. We know,
however, that y(5) = e® ~ 148.4131591. In other words, this approximation
is not good at all. It is rather terrible, in fact.

We should not give up on the Euler method entirely, however. Consider
taking Az = 0.1 (n = 50) and Az = 0.01 (n = 500). We can see that this
significantly increases the accuracy of the numerical solution (see Figure 3)!
In particular, we notice that, for Az = 0.1 we have y(5) ~ 117.3908529, and



for Az = 0.01 we have y(5) ~ 144.7727724.

Example 2: We have shown that decreasing the step Az increases
the accuracy of estimates. How else might we improve the accuracy of a
numerical method?

The answer is that we can choose a different numerical method alto-
gether. Consider the following method, which is a specified implementation
of the Runge-Kutta method. (This method comes from approximating the
integral in the third method for numerical approximation using the Simp-
son’s Rule.) In this method, we define the quantities

k1 = f(xnayn)
1 1
ky = f(xn + §A$a Yn + ikle)

1 1
ks = f(zn + §Aaz, Yn + §k2A:r)
k4 = f(xn + Am»?/n + k3A$)

and then update the system with

A
Ynt+1l = Yn + % (k1 + 2ko + 2ks + kyq) .

Using this method we can get a near exact approximate of the solution over
the interval x = 0 to = 5 using the time-step Az =1 (see Figure 4).

The moral of the story is that there is a trade-off between accuracy
and computational resources in one direction or the other. Either we have
to decrease the step-size, or we have to choose a more computationally-
intensive numerical method. In general, it is some combination of both
which is most effective.

It is also worth noting that the example we have considered was only
illustrative, since we knew the exactly solution. In general practice no ex-
plicit solution is known by which to verify our numerical solution, so we
must know that the method we using is sound. This is a very challenging
(and exciting!) field of research but delving in any depth into it is beyond
the scope of this course.

More examples are contained in Sections 2.4-2.6 of the text.
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Figure 4: The forward Euler scheme with Az =1 (red) compared with the
Runge-Kutta method (blue) with the same time step. We can see that agree-
ment in the estimate to the true solution y(x) = e® increases by switching
method, at the expense of needing greater computation resources in each
step.



